Genome project management resources at the National Agricultural Library

Chris Childers and Monica Poelchau USDA-ARS, National Agricultural Library

So you have a genome project. Where will you store your data?

- Make your data available through NCBI when applicable (or other INSDC organizations).
- To make your data even more useful for your community, consider also making it available in a taxon-specific repository.
- Advantages for you:
 - Greater visibility for your dataset
 - Value-added tools for searching and browsing, analysis
 - Curation tools to improve annotation quality
 - Help with data management
 - Increasing mandate from journals and funding bodies to make research data fully accessible post-publication^{1, 2}

¹http://www.nature.com/authors/policies/data/data-availability-statements-data-citations.pdf ²https://obamawhitehouse.archives.gov/the-press-office/2013/05/09/executive-order-making-open-andmachine-readable-new-default-governmentSo you have a genome project. Where will you store your data?

- Advantages for the scientific community:
 - Helps facilitate knowledge discovery for humans (and sometimes machines);
 - Easier to find data for comparative analyses;
 - Promotes reproducible research;
 - General repositories (e.g. GenBank) may not meet the needs for storing all data types, in particular for non-standard data types (e.g. phenotypic data).

Genome data management resources for arthropods – how to choose

- What species is the data from?
 - Many taxon-specific genome databases are here at this workshop
- What kind data do you have?
 - Raw data, genome assemblies, transcriptome assemblies, gene annotations, can and should all be stored at NCBI (or other INSDC organization)
 - Some or all of these data types can also be made accessible at genome databases (just ask)
 - Generic repositories (e.g. Dryad, Ag Data Commons) can be used for data types that don't fit the mold

The i5k Workspace@NAL

- We support any 'orphaned' arthropod genome project.
 - Connect researchers to the data
 - Create standardized tools for accessing the data in useful ways
 - Provide resources to facilitate manual curation projects
- Supported data types:
 - Genome assembly
 - Anything that you can map to or predict from the genome assembly
- Main requirements:
 - Genome assembly needs to be in GenBank/ENA/DDBJ
 - Data should be public (no private repositories)
 - Manual annotation only occurs at one genome database at a time

- Research plan
- Genome sequencing
- Genome assembly
- Automated annotation of genome assembly
- Manual Curation
- Official gene set (OGS) generation
- Biological insights/Publication
- Data access for the broader community
- Genome project maintenance


Genome Project Trajectory

Our background:

- Originally set up to support genomes sequenced as part of the i5k initiative
- I5k: International effort to prioritize insect genomes for sequencing; provide guidelines for genome sequencing and curation; and seek funding
- I5k Goal: coordinate the sequencing and assembly of 5000 insect or related arthropod genomes
- Brief introduction to i5k at the beginning of the i5k session on Thursday

i5k Workspace content – 57 species and counting

Order	Quantity	Order	Quantity
Amphipoda	1	Hemiptera	7
Araneae	3	Hymenoptera	14
Blattodea	1	Lepidoptera	2
Calanoida	1	Odonata	1
Coleoptera	7	Orthoptera	1
Diplura	1	Scorpiones	1
Diptera	13	Thysanoptera	1
Ephemeroptera	1	Trichoptera	1
Harpacticoida	1		

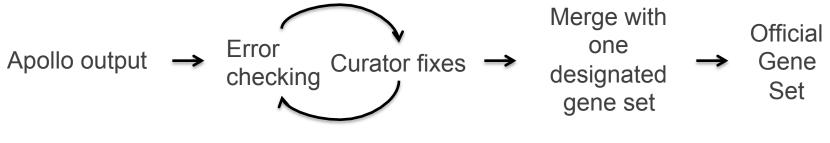
 Many other datasets mapped to, or predicted from each genome assembly (gene predictions, transcriptomes, RNA-Seq, etc.)

ISDA

Community annotation at the i5k Workspace

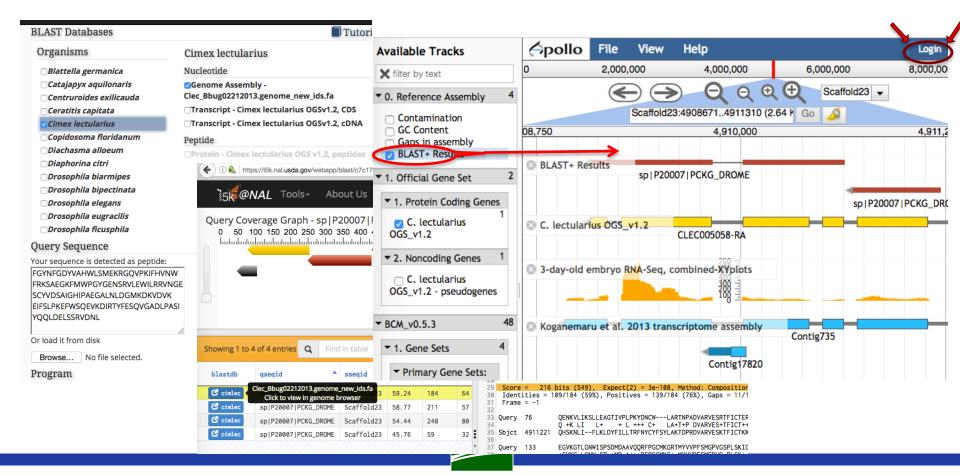
- What is community annotation?
 - Scientists collectively examine and improve gene models (usually computationally predicted)
- Why annotate?
 - Verify quality of automated gene predictions
 - Improve gene models for specific analyses
 - Link gene models to existing literature and ontologies
- Our community: Over 400 registered annotators have curated over 10,000 gene models using the Apollo software

Community annotation at the i5k Workspace


Our support for community annotation includes:

- Access to a large community of curators
- Tutorials, guidelines, webinars
- Registration mechanism for new annotators
- One-on-one support
- Software to evaluate changes between curated and original annotations (Chien-Yueh Lee, <u>https://github.com/chienyuehlee/gff-cmp-cat</u>)

QC and OGS pipeline


- QC program corrects common formatting errors from the curation process
- OGS generation program merges curated models with one designated gene set using curator-supplied information
- Still in development, already 6 OGS's produced (Mei-Ju Chen)

Genome already hosted elsewhere?

• You can also use our tools to query the datasets that we host.

Other resources at the NAL: The Ag Data Commons

- Hosts any dataset funded by the USDA
- Landing page
- Citable DOI
- <u>https://data.nal.usda.gov/</u>
- Nine i5k datasets already available

Ag Data Commons Beta National Agricultural Library

Datasets About - News

Log in Register

Q

Featured program: The Veterinary Pest Genomics Center

This program uses big data to evaluate risk from and develop mitigations for invasive and other economically important veterinary pests.

Agricultural Products

Highlighted Datasets

Nutrient and herbicide concentrations, loads, and daily discharge data for caves in the Goodwater Creek Experimental Watershed, Long-Term...

Search Ag Data Commons

What we'll talk about tomorrow

- 1. Background: What is the i5k Workspace?
- 2. Submitting data
- 3. Finding data at the i5k Workspace
 - 1. General search/Content types
 - 2. Data downloads
 - 3. BLAST
 - 4. Clustal(s)
 - 5. HMMER
 - 6. Jbrowse/Apollo
- 4. Improving data at the i5k Workspace via community annotation
 - 1. See Monica Munoz-Torres' workshop for full use of Apollo

Need more information?

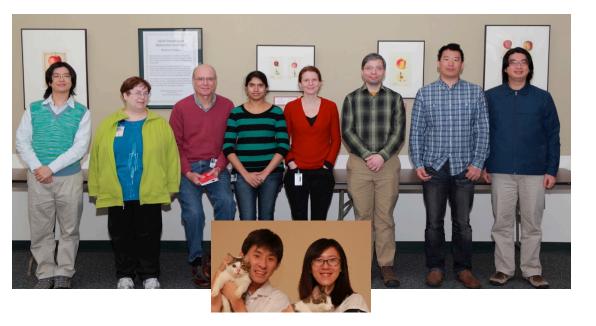
i5k Workspace@NAL:

- https://i5k.nal.usda.gov/
- <u>https://github.com/NAL-i5K/</u>
- Poster during the Friday session

The i5k initiative:

- New website: <u>http://i5k.github.io/</u> Ag Data Commons:
- https://data.nal.usda.gov/

Acknowledgements


The NAL Team

- Gary Moore
- Susan McCarthy
- Yu-yu Lin
- Mei-Ju Chen

Workspace alumni

- Chien-Yueh Lee
- Han Lin
- Jun-Wei Lin
- Vijaya Tsavatapalli
 i5k Workspace@NAL advisory
 committee
- Jay Evans
- Kevin Hackett
- Simon Liu
- Ursula Pieper

- i5k Coordinating Committee
- i5k Pilot Project
- Apollo & JBrowse Development Teams
- GMOD/Tripal community
- The AgBioData consortium
- All of our users and contributors!

