Using Apollo at the i5k Workspace@NAL

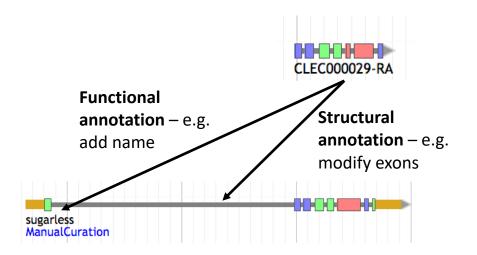
Monica Poelchau, USDA-ARS NAL April 16th, 2019

Agenda

- Manual annotation general overview
- I5k Workspace tools for manual annotation – BLAST, Clustal, HMMER
 - Apollo2
- Manual annotation example: preparation
- Manual annotation live example

Other resources

- Monica Munoz-Torres from the Apollo group has a number of comprehensive tutorials:
 - <u>https://www.slideshare.net/MonicaMunozTorres/presentations</u>
 - I recommend these slides if you need more background:
 - <u>https://www.slideshare.net/MonicaMunozTorres/apollo-workshop-at-ksu-2015</u>
 - Note there are two versions of Apollo. Some organisms at the i5k Workspace still use the older version with a slightly different interface
 - If you are new to Apollo, or need a refresher, I highly recommend that you review one of her presentations
- The official Apollo annotation guide:
 - <u>http://genomearchitect.org/users-guide/</u>
- Other manual curation tutorials:
 - <u>https://i5k.nal.usda.gov/manual-curation-example</u>
 - <u>http://genomecuration.github.io/genometrain/d-feature-curation-crossing/</u>



Manual annotation general overview

What is manual annotation?

- Manual review and improvement of an existing gene prediction
- Draw on external evidence (e.g. RNA-Seq, cDNA, genes from other species) to improve a computationally predicted gene model

Why manually annotate?

- "Incorrect annotations poison every experiment that makes use of them ... Worse still, the poison spreads because incorrect annotations from one organism are often unknowingly used by other projects to help annotate their own genomes."
 - Yandell and Ence 2012, doi:10.1038/nrg3174
- Link gene models to existing literature and ontologies, providing richer data

General process of manual annotation

- 1. Select a chromosomal region of interest (e.g. scaffold)
 - 1. E.g. find sequence of interest from one or several other species, and align against proteins or genome sequence from your species
- 2. Select appropriate evidence (tracks in Apollo, or your own files)
- 3. Determine whether a feature in your evidence provides a reasonable starting gene model
 - 1. If yes: select and drag the feature to the 'user-created annotations' area, creating an initial gene model. If necessary use editing functions to adjust the model.
 - 2. If not get in touch with us!
- 4. Edit model if necessary
- 5. Check your edited gene model for integrity and accuracy by comparing it with available homologs
 - 1. Verify that the gene model is the best representation of the underlying biology
- 6. Repeat steps 1 through 5 as needed to refine model
- 7. Add annotation details in the "Information Editor"
 - 1. Name, symbol, other comments

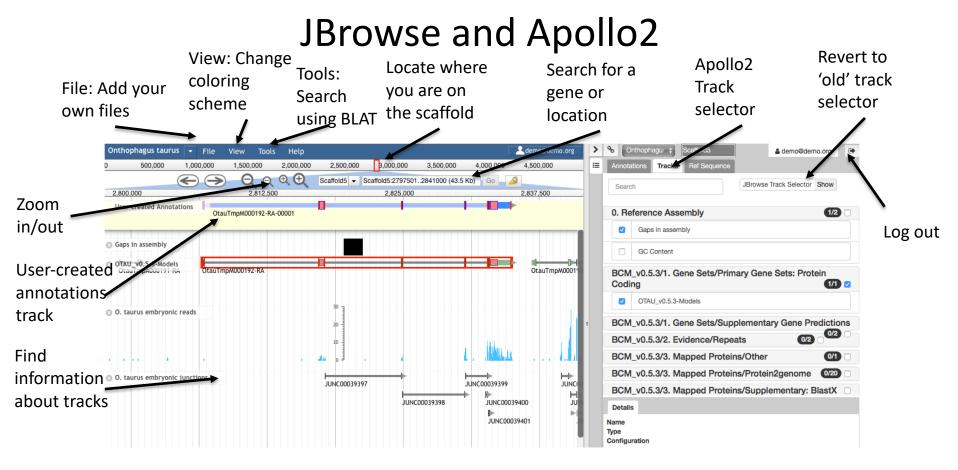
Adapted from https://www.slideshare.net/MonicaMunozTorres/apollo-workshop-at-ksu-2015

Manual annotation: i5k Workspace tools

First, some conventions

- HSP High scoring pair in BLAST/BLAT alignments
 - The 'Hits' in an alignment result set
 - A subsection of a pair of sequences with sufficient score
 - HSPs can change based on the alignment parameters
- Five prime end and three prime end
 - Based on direction of transcription
 - Initiation site is at the five prime end
 - Stop codon is at the three prime end

2' LdecTmpB001070-RA


LdecTmpM001081-RA

5'

• In the genome browser, arrowheads indicate direction

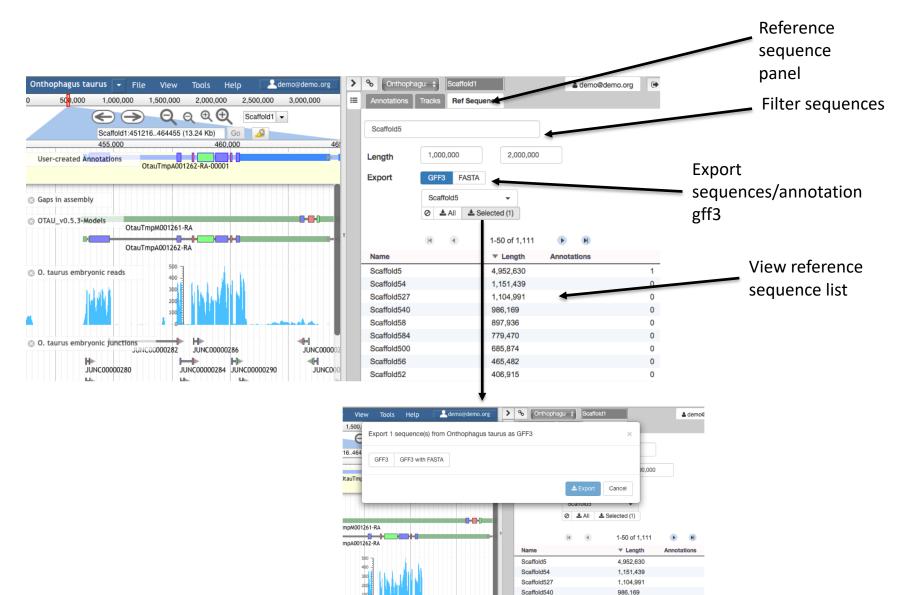
USDA

5'

JBrowse is a web- based genome browser Apollo adds editing functions to JBrowse

- Visualize features that are mapped to a genome
- These features are displayed as tracks
- Many different types of data may be displayed

- Manual gene curation
- Changes automatically saved back to server
- Edits are visible to other annotators in realtime
- Editing history is tracked

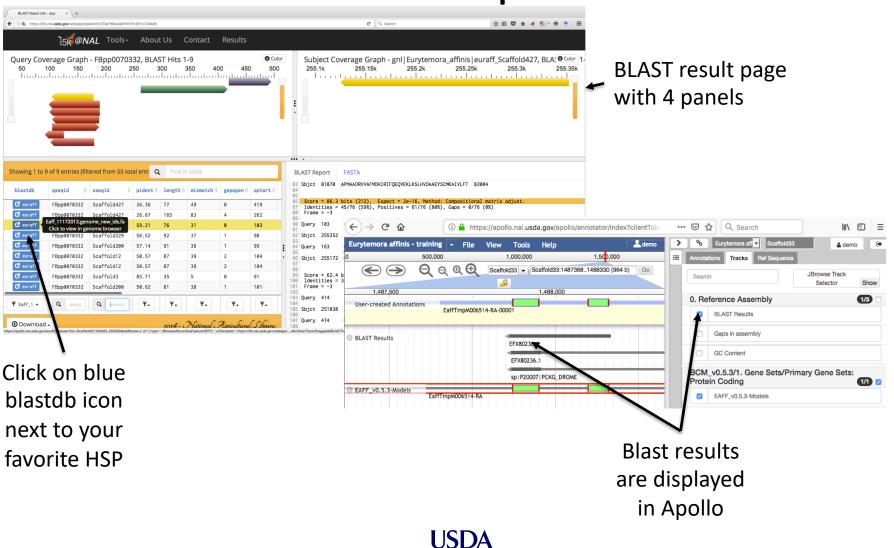


Apollo2 – Annotations Panel

Apollo2 – Ref Sequence Panel

USDA

007 000


i5k Workspace BLAST: one way to access Apollo

Select organism	BLAST Databases Organisms Drosophila takahashii Dufourea novaeangliae Ephemera danica	Contact Eurytemora affinis Nucleotide Genome Assembly - Eaff_11172013.genome_new_ids.fa Transcript - EAFF_new_ids.fna Peptide OProtein - EAFF_new_ids.faa	Select organism- specific database BLAST against the genome assembly	
Paste or	 Ladona fulva Lasioglossum albipes 		to view HSPs in Jbrowse	
upload	Query Sequence Your sequence is detected as peptide: >FBpp0070332	_	JD10W3C	
query 🔪	MDNCDQDASFRLSHIKEEVKPDISQLNDSNN SSFSPKAESPVPFMQAMSMVHVLPGSNSASS			
sequence(s)	NNNSAGDAQMAQAPNSAG GSAAAAVQQQYPPNHPLSGSKHLCSICGDRA SGKHYGVYSCEGCKGFFKRTVRKDLTYACRE Or load it from disk			
Program is	Browse No file selected. Program	Oblasto Oblastx Reset Search		
automatically	Oblastn Otblastn Otblastx tblastn - Peptide vs. Translated Nucleotide	Oblastp Oblastx Reset Search		
selected				

URL: https://i5k.nal.usda.gov/webapp/blast/

USDA

i5k Workspace BLAST: one way to access Apollo

HMMER and Clustal

- Use HMMER to detect remote protein homologs
- <u>https://i5k.nal.usda.gov</u> /webapp/hmmer/
- Use Clustal to perform multiple sequence alignments
- <u>https://i5k.nal.usda.gov</u> /webapp/clustal/

Tips and Tricks

- The i5k Workspace BLAST results persist for one week
 - You can bookmark and share searches
 - BLAST HSPs are 'draggable' and can be used in annotations
- Jbrowse/Apollo URLs can be shared
 - Allow you to share the exact view (including active tracks) with others
 - Great for troubleshooting with collaborators
- In Apollo "walk" feature boundaries
 - Square brackets walk exon boundaries: [and]
 - Curly brackets walk gene boundaries: { and }
- In Apollo, you can pin tracks to the top
- If you know the name or ID of the gene that you'd like to annotate, you can paste it into the search box in Apollo to navigate to it

Manual annotation example: preparation

Annotation Example

- Phosphoenolpyruvate carboxykinase (pepck) in the copepod *Eurytemora affinis*
- Pepck catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP).
- More information about the copepod: <u>https://i5k.nal.usda.gov/Eurytemora_affinis</u>
- Apollo URL (for training only): <u>https://apollo.nal.usda.gov/apollo/3068161/jbrowse</u> /index.html

Login credentials: demo/demo

Notes on *E. affinis* genome/browser

- Big advantage for annotation: lots of RNA-Seq and transcriptome data are available to use as contributing evidence for your gene models

 Includes strand-specific RNA-Seq
- Disadvantage: No close reference genomes, so it may be harder to find homologs for your genes of interest to inform your annotations.

Available tracks for *E. affinis*

JSDA

Available Tracks		Apollo File
X filter by text		0
0. Reference Assembly	:	2 (*
BCM_v0.5.3	4	7
▼ 1. Gene Sets	3	80,000
▼ Primary Gene Sets: Protein Coding	1	@ EAFF_v0.5.3-Mo
☑ EAFF_v0.5.3-Models		EaffTm
 Supplementary Gene Predictions 	2	
 augustus_masked snap_masked 		
2. Evidence	2	
3. Mapped Proteins	41	
• 4. Transcriptome	1	
Transcriptome	2	6
▼ Assembly	2	
 075_zz91_transcriptome Mixture of males and females: cufflinks_IGS_UMA1 		
Coverage Plots (BigWig)	10	
 Mapped Reads 	7	
 RNA-Seq of Untreated Mixed Adults, digitally normalized TF1_accepted_hits 		
TM_accepted_hits		
UMA_accepted_hits		
VAF_accepted_hits		
VAJU_accepted_hits		
VAM_accepted_hits		
Splice Junctions	7	

- **Baylor Maker annotations:**
 - Primary Gene Set:
 - EAFF v0.5.3-Models
 - Other tracks that were used to generate the primary gene set
- Transcriptome/RNA-Seq
 - Transcriptome assemblies
 - Coverage plots, Mapped RNA-Seq data, Splice junctions
 - Some of the RNA-Seq libraries are stranded

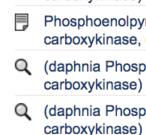
Choosing reference proteins: *D. melanogaster* pepck in UniProt

UniProtKB - P20007 (PCKG_DROME)

domains and sites

Display	S BLAST Align Format	Add to	basket	() Histo	ory	/ ar	noi	tatio	on c	qual	ity				
Entry							0	rgani	ism-s	peci	fic da	taba	ses		
Publications	Protein Phosphoenolpyruvate carboxykinase (GTP)							FlyBase ⁱ FBgn0003067. Pepck.							ck.
Feature viewer	Gene Pepck Organism Drosophila melan	ogaster (Fri	uit fly)				S	Suba	celli	ılar I		ation	i		
Feature table	Status Reviewed - A		1	.00 -	Experim	iental ev									ybase is ther great
UniProtKB - P2	0007 (PCKG_D	ROME	Ξ)											re	esource
Display	Selast Elast	mat 🛱 Add t	o basket	O Histo	ry									📢 Feedb	
Entry Publications		1 ⁵⁰	100	150	200	250	300	350	400	450	500	550	600	647	
Feature viewer Feature table		50	100	150	200	250	300	350	400	450	500	550	600		
	Domains & sites		→ ♥			•	• 4	•		Î A		0			
	Molecule processing														
Feature viewer give graphical view of	Sequence information ProtVista İ	50	100	150	200	250	300	350	400	450	500	550	600		

Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP). Source: <u>http://www.uniprot.org/uniprot/P20007</u>


ISDA

Choosing reference proteins: *Daphnia pulex* Pepck

• GenBank record:

https://www.ncbi.nlm.nih.gov/protein/EFX80 236.1

CONSRTM TITLE JOURNAL	Lynch, M., Boore, J.L. and Grigoriev, I US DOE Joint Genome Institute (JGI-F Direct Submission Submitted (02-FEB-2011) US DOE Joint	.V. GF) Genome Institute, 2800
COMMENT	Method: conceptual translation.	← Treat with caution!!!
FEATURES	Location/Qualifiers	
source	1652	

Manual annotation live example

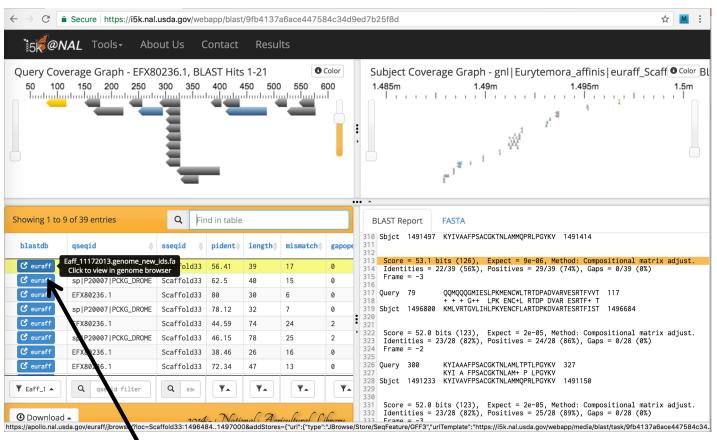
BLAST dmel, dpul proteins against *E. affinis* proteins

https://i5k.nal.usda.gov/training/webapp/blast/

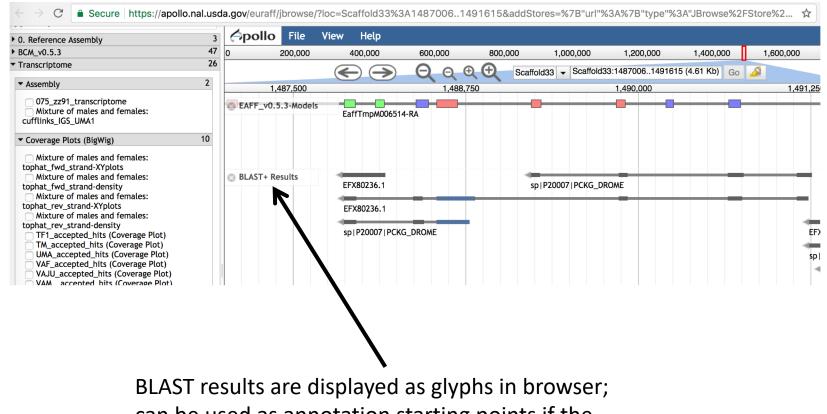
() A https://i5k.nal.usda.gov/webapp/blast/c577723ffdb04de7921d768d2a1080b6							C Search 🗘 🖨 🛡	Ξ	
	•i5 	NAL Tools-	About	Us Co	ontact R	Results			
0 50	ge Graph - EFX8023 100 150 200	250 300	350 40	10 450	500 5	350 600 		Subject Coverage Graph - gnl Eurytemora_affinis_protein_v0.5.3 EAFF006514-PA, BLA	
Showing 1 to 2 of 2	entries (filtered from 19	total entries)		٩	Find in table		•	BLAST Report FASTA	Ī
blastdb qsec	eqid 🔺	sseqid 🔶	pident 🔶	length 🔶	mismatch 🗍	gapopen 4	qstart 🔶	192 >gnl Eurytemora_affinis_protein_v0.5.3 EAFF006514-PA unnamed protein product 193 Length=575 194	
	80236.1 P20007 PCKG_DROME	EAFF006514-PA EAF7-06514-PA	50 51.85	612 594	242 235	10 5	42 52	195 Score 604 bits (1557) Expect = 0.0, Method: Compositional matrix adjust. 196 Identities = 306/612 (50%), Positives = 401/612 (66%), Gaps = 64/612 (10%) 197 197 198 Query 42 KSLPSKVRSFVEDCVKLCQPSQVHICNGSEQENRSLIQQMQQGMIESLPKMENCWLTRT 101 199 ++P YR ++ C+P +HI +G+ + E++ + + + C++ LPK ENC+L RT 200 200 Sbjct 14 EGVPQHVREWINHWADICEPQDIHIMDGTSEEDVALKKMLVRTGVLIHLPKYENCFLART 73	
EAFF	y the prot 5006514 fe : URL: <u>https</u>	or sear	ching	g in A	•		one a si	ults are filtered by e-value; only protein in the <i>E. affinis</i> dataset has gnificant match <u>o/blast/080dd52f6dfc4f55a60c5bf22ac46270</u>	

Modify *E. affinis* model sequence in Apollo

• Go to Apollo URL:

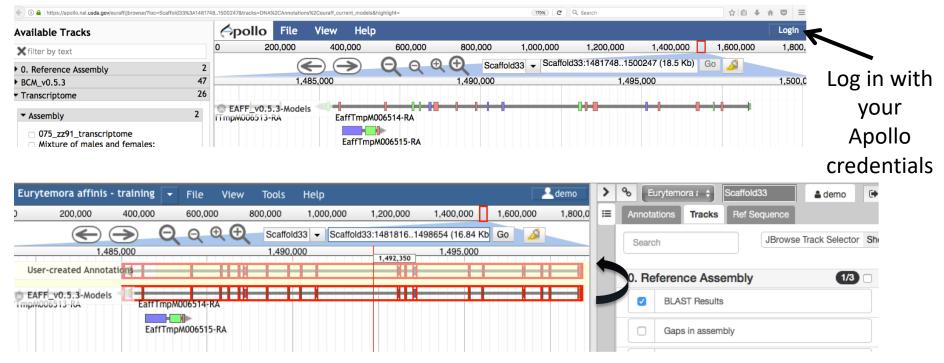

https://apollo.nal.usda.gov/apollo/3068161/jbro wse/index.html

- Find mRNA of EAFF006514-PA in genome browser by pasting EAFF006514 into search box, selecting EAFF006514-RA
- Log in to Apollo
- Drag EAFF006514-RA into the yellow annotation track
- Check available evidence for model


Another approach: BLAST against the genome

https://i5k.nal.usda.gov/training/webapp/blast/

Click on blue blastdb button next to your favorite HSP to view it in JBrowse

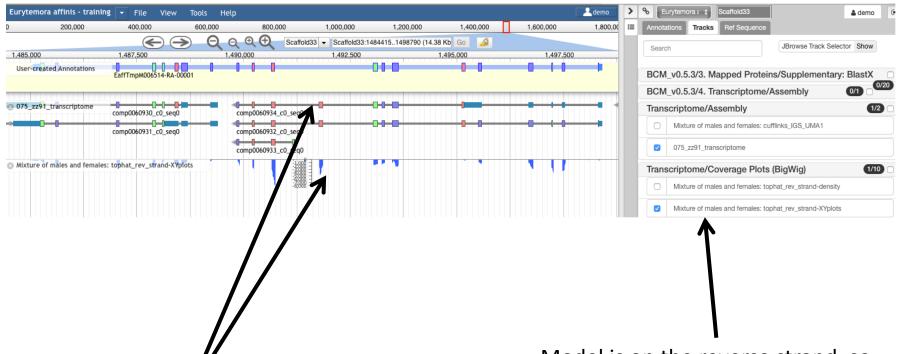

Another approach: BLAST against the genome

can be used as annotation starting points if the alignment is high quality

Create annotation in user-created annotations track

Drag model EaffTmpM006514-RA to User-created Annotations

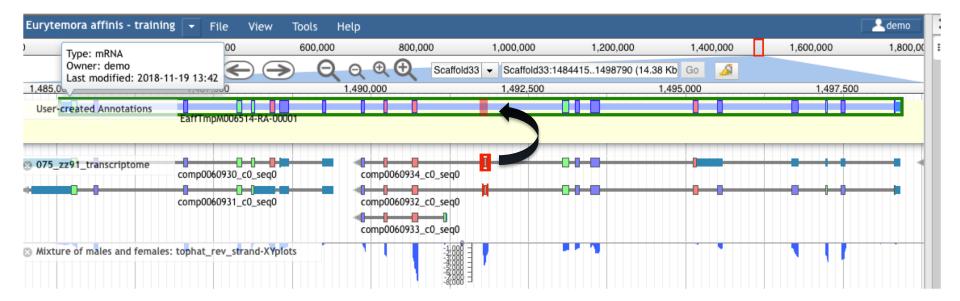
track



Modify *E. affinis* model sequence in Apollo

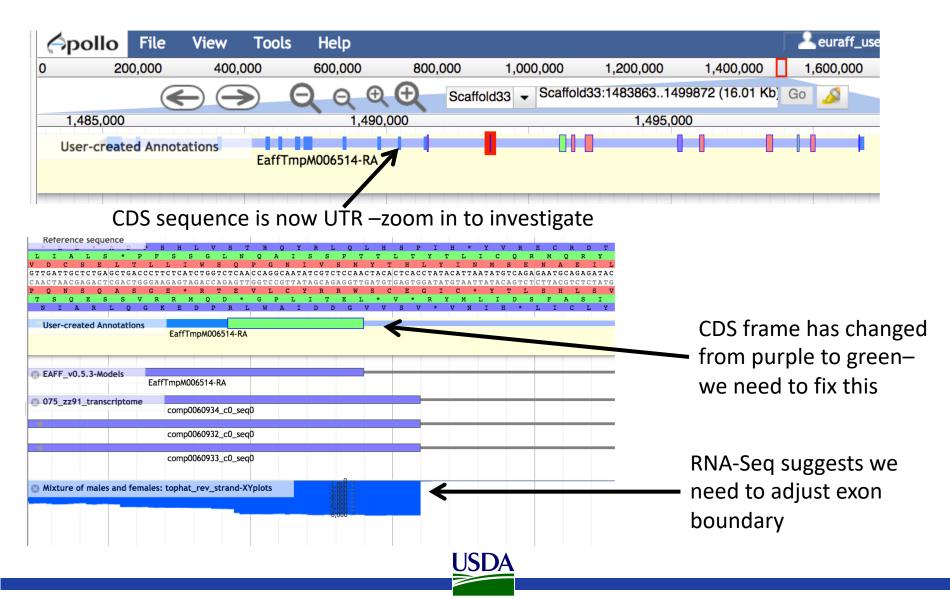
- Questions:
 - What evidence do you choose to check the integrity of the model?
 - Do you need additional evidence?
 - How do you evaluate whether the protein sequence is as complete as it can be?
 - Should you add/modify UTRs?

View available evidence



RNA-Seq and transcriptome tracks suggest that one exon is missing

Model is on the reverse strand, so we can take advantage of the stranded RNA-Seq available for this species


Add an exon to the model

Drag exon from transcriptome track into new gene model

Adjust exon boundary

Adjust exon boundary

pollo	File V	new roots	пецр			
	200,000	400,000	600,000	800,000	1,000,000	1,200,000
			Q Q &	Scaf	fold33 👻 Scaffold33	3:14906871490801 (1
	1,490,700		1,490,725		1,490,750	
ence	sequence					
A	LS*	PFSSG				Y T L I C
ATTGCT	CTGAGCTG.	ACCCTTCTCATCTG	GTCTCAACCAGG	CAATATCGTCT	CCAACTACACTCAC	CTATACATTAATATG
N S	Q A	S G E * R	T E V L	C Y R R	W S C E	GATATGTAATTATAC G I C * Y
IA	RLQ	GKED	PRLWI	AIDD	g v v s v	* V N I H
er-creat	ted Annotatio	ons ^o G A A <mark>G A G T A G A C</mark> Eatt I mpMi	CAGAGTTGGTCC	GTTATAGCAGA	GGTT GATGTGAGTG	GATA GTAATTATAC
		Lattinpin				
FF_v0.5	5.3-Models	EaffTmpM00651	4-RA			
75_zz91_	transcriptor	me				
		comp00609	34_c0_seq0			
		comp00609	32_c0_seq0			
		comp00609	33_c0_seq0			
		compositos	33_co_seqo			
ixture of	f males and f	emales: tophat_rev	_strand-XYplots	=3/88		
				-8;00		
Refere	ence seque	ence	H T. V S	T R O	V R L O	T. H S. P
LI	ALS	* P F	SSGL	NQA	ISSP	TTLT
J D C	C S E IGCTCTGA	GCTGACCCTTC	T W S TCATCTGGTCT	Q P G CAACCAGGC	N I V S AATATCGTCTCC	N Y T H I AACTACACTCAC
CAACTAA P O N	ACGAGACT N S O	CGACTGGGAAG	AGTAGACCAGA * R T	GTTGGTCCG E V L	TTATAGCAGAGG C Y R R	TTGATGTGAGTGO W S C E
TS	Q E S	S V R	R M Q D	* G P	LITE	
NI	AK	L Q G K	E D P R	L w A	I D D G	• • 5 •
CA User-d	created An	notations ^G G A A G	agtagaccaga affTmpM006514	GTTGGTCCG -RA	TTATAGCAGAGG	TTGATGTGAGTG
C EAFF	_v0.5.3-Mo	dels				
			npM006514-RA			
🙁 075_z	zz91_trans	criptome	omp0060934_c0	seal		
		C	01100000754_00	_scqo		
		-				
					USL)A

Evaluate new protein sequence

- Blast modified EAFF006514-PA sequence to NCBI's nr database
 - Make sure it doesn't match a potential contaminant
 - Get an idea whether you have the right sequence
 - Blastp home:
 - <u>https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYP</u> <u>E=BlastSearch&LINK_LOC=blasthome</u>
 - Result URL:
 - https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&RID=Z6C1S80H015
- Once contamination is ruled out, it's better to align your sequence against a smaller set of high-quality proteins
- If you notice that parts of the protein are missing, check the 'Gaps in assembly' track in the browser

Evaluate new protein sequence

- Get *E. affinis* pepck protein sequence from old model and new model
- Align new and old sequence to dmel and dmag protein sequences
 - Clustal (<u>https://i5k.nal.usda.gov/webapp/clustal/</u>)
 - Can also use NCBI Blast
- Check alignment extent, %ID

Clustal Results

://i5k.nal.usda.gov/webapp/clustal/105850a3594e4234a21b07d93cbbed71

@NAL Tools+	Submit Data - Admin About Us Contact	
euraff_old_pepck euraff_new_pepck sp P20007 PCKG_DROME EFX80236.1	ISVGDDIAWLRPDEKGQLRAI ISGITNSQGEKKYIVAAFPSACGKTNLAMMQPRLP ULGITDPKGEKKYITAAFPSACGKTNLAMLNPSLANYKVECVGDDIAWMKFDSQGVLRAI ILGITNPQGQKKYIAAAFPSACGKTNLAMLTPTLPGYKVECVGDDIAWMHFDKEGRLRAI * ******:: *.:* ****	New exon added
euraff_old_pepck euraff_new_pepck sp P20007 PCKG_DROME EFX80236.1	NPENGFFGVAPGTSYTSNPVAMQSIFKDTIFSNVAMTDDGGVWWEGMGDKPK NPENGFFGVAPGTSYTSNPVAMQSIFKDTIFSNVAMTDDGGVWWEGMGDKPK NPENGFFGVAPGTSMETNPIAMNTVFKNTIFTNVASTSDGGVFWEGMESSLA NPENGFFGVAPGTNYATNPNACYNFFLYAMLTIQKNTIFTNVAKTSDGGVFWEGLEKEV- ************************************	
euraff_old_pepck euraff_new_pepck sp P20007 PCKG_DROME EFX80236.1	ERSSCIDWKGK-PWRPTSSNPAAHPNSRFCTPLLNCPVLDESAEDPAGVPIAAILFGGRR ERSSCIDWKGK-PWRPTSSNPAAHPNSRFCTPLLNCPVLDESAEDPAGVPIAAILFGGRR PNVQITDWLGK-PWTKDSGKPAAHPNSRFCTPAAQCPIIDEAWEDPAGVPISAMLFGGRR TGVDITSWLGDANWTKSSGKPAAHPNSRFCAPASQCPIIDPLWESPEGVPIDAILFGGRR * *. * *.:**************************	
euraff_old_pepck euraff_new_pepck sp P20007 PCKG_DROME EFX80236.1	PSGVPLVYQAISWEHGVFMGACVKSEATAAAEFKGKQIMHDPFSMRPFFGHW PSGVPLVYQAISWEHGVFMGACVKSEATAAAEFKGKQIMHDPFSMRPFFGHW PAGVPLIYEARDWTHGVFIGAAMRSEATAAAEHKGKVIMHDPFAMRPFFGYNFGDYVAHW PRGVPLVYEALNWKHGVFVGASVSSEATAAAEHKGRSIMHDPFAMRPFFGYNAGNYLGHW * ****:*:* .* ****:**.: ***************	 Another exon might be missing (we're not going to handle this today)
- Clustal result	* ****:*:* .* ****:**.: ***************	to handle this today)

https://i5k.nal.usda.gov/webapp/clustal/e8c0748c50954d6a8268d0a17f087a9d Scroll to bottom of page and click 'colorful' to see color-coded alignment

Using the Information Editor

40	0,000	600,000	800,000	1,000,000	1,200,000	1,400,000				
	Information Ec	fitor				×				
500	Select mRNA	EaffTmpM006514-RA-00001		•		1,4	Use the			
oeno		gene			mRNA 🗲		mRNA/transcript			
	Name			Name	Phosphoenolpyruvate	e carboxykina:	side of the IE			
5093	Symbol			Symbol	Pepck	R				
_	Description Created	2018 11 10		Description Created	2019 11 10					
5093	Last modified	2018-11-19 2018-11-19		Last modified	2018-11-19 2018-11-19					
	Last mounde	2010-11-13		Last mounied	2010-11-13					
rev		Status			Status					
		d O Delete		Approved	Delete					
		DBXRefs			DBXRefs	Review ou	r naming guidelines			
	DB	Accession		DB	Accession		00			
							ore naming:			
						<u>https://i5</u>	<u>k.nal.usda.gov/i5k-</u>			
						workspace	-gene-and-protein-			
						nam	ing-guidelines			

Using the Information Editor

- Select the model in Apollo, then right-click, and select 'Edit Information' from the drop-down menu
 - Use the 'mRNA' section
 - Name: We recommend the INSDC naming guidelines:
 - <u>http://www.uniprot.org/docs/nameprot</u>
 - If a naming convention exists, use it (e.g. for gene families)
 - Name should be unique and attributed to all orthologs (as far as possible)
 - Use name from an orthologous protein if you are sure that your gene model is an ortholog.
 - Document your justification for the name in the Comments field (e.g. "88% sequence similarity via blastp to D. melanogaster pepck P20007")
 - Comments Document what changes you performed, and your justification for the name. These notes will be visible in the OGS, so make sure that others understand them

Checklist for accuracy and integrity

- Check start, stop and exon boundaries (splice sites)
 - Try to fix non-canonical splice sites if possible
- Check if you can annotate UTRs (e.g. using RNA-Seq data)
- Check for gaps in the genome
- If you change the genome sequence, add a justification comment to the corresponding gene model
- Use BLAST or a multiple sequence aligner
 - To look at completeness of model
 - To verify the appropriateness of the gene name
- In the Information editor *mRNA* field
 - Fill in the Replaced Model for the *Maker* gene (EAFF_v0.5.3-Models)
 - Update the Name if appropriate
 - Add comments that describe
 - your evidence for the annotation
 - Modifications that you made to the gene model

cf. <u>https://www.slideshare.net/MonicaMunozTorres/editing-functionality-</u>

apollo-workshop

What happens to my annotation when I'm done?

- This depends on the genome project that you're working on.
- If the genome coordinator has asked us to generate an OGS (Official Gene Set), we will do so
 - We are still working on this process, so if you ask us to do this, 1) it will take some time, and 2) we will probably ask you for co-authorship if you publish a paper on the OGS.
 - We are working on a pipeline to submit Official Gene Sets to GenBank, where they will be archived/accessioned
- Otherwise, don't assume that your annotation will be archived.
 - If you need it to be, get in touch with us and we'll figure out what to do.
- Get in touch with us and the genome project coordinator if you're not sure about the status of a genome project.
- <u>https://i5k.nal.usda.gov/data-management-policy</u>

I5k Workspace 'Etiquette'

- 1. Use Apollo to improve a gene model in an i5k Workspace assembly.
 - 1. If you just want to practice use one of our training instances.
 - 1. <u>https://i5k.nal.usda.gov/jbrowseapollo-training</u>
 - 2. If you just want to view the data you probably can get what you want without using Apollo. All of the data that we host is public.
- 2. Your annotation work is a community effort.
 - 1. If you notice that someone else is working on your model of choice, get in touch with them (or us) and collaborate don't make a 2nd model or delete the other model.
 - 2. Keep in mind that your work may be used by the scientific community once you're done.
- 3. If you publish any of your work generated in the i5k workspace:
 - Get in touch with the genome contact first (you can find the contact info on the organism page; <u>https://i5k.nal.usda.gov/species</u>);
 - 2. Please cite the i5k Workspace paper! This helps us continue to exist.
 - 1. <u>https://doi.org/10.1093/nar/gku983</u>

Thank you!

• i5k Coordinating Committee

- i5k Pilot Project
- Apollo & JBrowse Development Teams
- GMOD/Tripal community
- All of our users and contributors!

Contact us:

- <u>https://i5k.nal.usda.gov/contact</u>
- i5k@ars.usda.gov

USDA

- Monica.Poelchau@ars.usda.gov
- <u>Christopher.Childers@ars.usda.gov</u>

The NAL Team

- Gary Moore
- Susan McCarthy
- Min-Chen Hsu
- Chun-Hung Lin
- Chia-Tung Wu

15k Workspace alumni

- Yu-yu Lin
- Chaitanya Gutta
- Li-Mei Chiang
- Yi Hsiao
- Chien-Yueh Lee
- Han Lin
- Jun-Wei Lin
- Vijaya Tsavatapalli
- Mei-Ju Chen
- Chao-I Tuan