Using Apollo at the i5k Workspace@NAL

Monica Poelchau, USDA-ARS NAL

September 20th, 2022

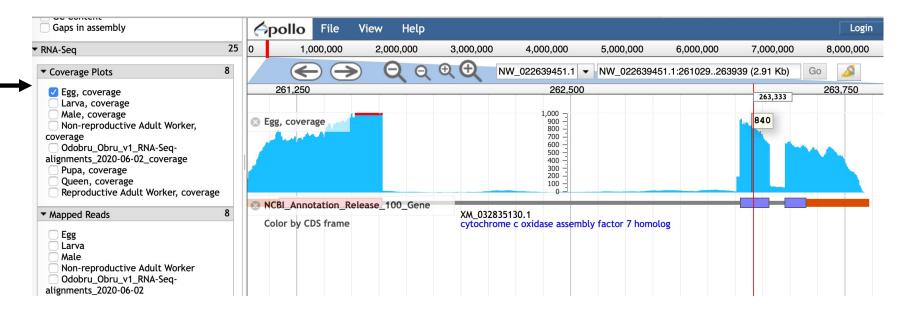
Agenda

- Basic RNA-Seq evaluation
- Basic structural changes- splitting and merging a model, adding and removing exons
- UTRs –when and how to add and adjust
- Changing translation start and stop sites, and open reading frames
- Non-canonical splice sites
- Annotating isoforms

Other resources

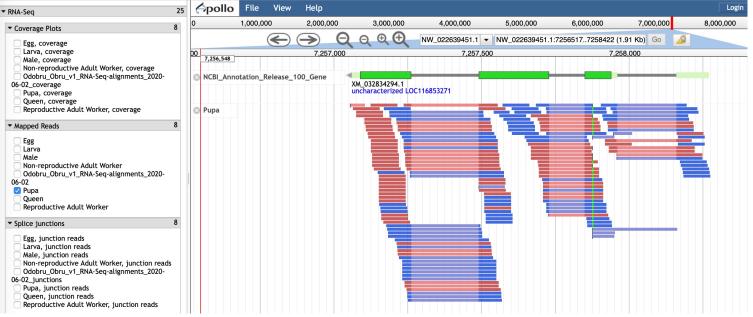
- I5k Workspace manual annotation landing page: <u>https://i5k.nal.usda.gov/manual-annotation-and-apollo</u>
- An additional Apollo webinar with a worked example: <u>https://www.youtube.com/watch?v=dol99KExLgY&feature=youtu.be</u>
- Monica Munoz-Torres from the Apollo group has a number of comprehensive tutorials:
 - <u>https://www.slideshare.net/MonicaMunozTorres/presentations</u>
 - I recommend these slides if you need more background:
 - https://www.slideshare.net/MonicaMunozTorres/apollo-workshop-at-ksu-2015
 - If you are new to Apollo, or need a refresher, I highly recommend that you review one of her presentations
- The official Apollo annotation guide:
 - <u>https://genomearchitect.readthedocs.io/en/latest/UsersGuide.html</u>
- Other manual curation tutorials: <u>http://genomecuration.github.io/genometrain/d-feature-curation-crossing/</u>
- VEuPathDB Apollo training webinar: <u>https://veupathdb.org/veupathdb/app/static-content/webinars.html#apollo</u>

Basic RNA-Seq evaluation



- Coverage plots: Histogram of the number of mappings at each nucleotide
- Mapped reads: Individual glyphs of each mapped read.
- Junction reads: Show where mapped reads are spliced.

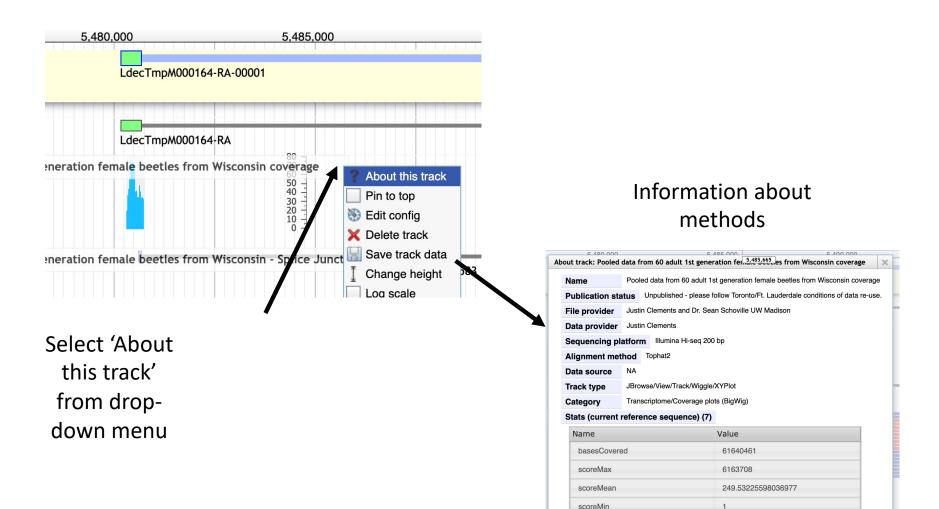
X filter by text	
0. Reference Assembly	
GC Content	
Gaps in assembly	
BLAST+ Results	
 NCBI Annotation Release 100 	
NCBI_Annotation_Release_100_Gene	
NCBI_Annotation_Release_100_Pseudogene	
RNA-Seq	
	ε
✓ Coverage Plots	, c
✓ Egg, coverage	
✓ Larva, coverage ☐ Male, coverage	
Non-reproductive Adult Worker, coverage	
Odobru_Obru_v1_RNA-Seq-alignments_2020-06-	
02_coverage	
 Pupa, coverage Queen, coverage 	
Reproductive Adult Worker, coverage	
	8
▼ Mapped Reads	
☐ Larva ☐ Male	
Non-reproductive Adult Worker	
Odobru_Obru_v1_RNA-Seq-alignments_2020-06-02	
D Pupa	
Queen Reproductive Adult Worker	
 Splice junctions 	8
Egg, junction reads	
Larva, junction reads	
Male, junction reads	
 Non-reproductive Adult Worker, junction reads Odobru_Obru_v1_RNA-Seq-alignments_2020-06- 	
02_junctions	
Pupa, junction reads	
Queen, junction reads	
Reproductive Adult Worker, junction reads	
	1



 Coverage plots: Histogram of the number of mappings at each nucleotide; hover over the blue area to see the value

 Mapped reads: Individual glyphs of each mapped read. Show mapped and spliced areas, and SNPs/indels. Informative, but hard to work with when zoomed out.

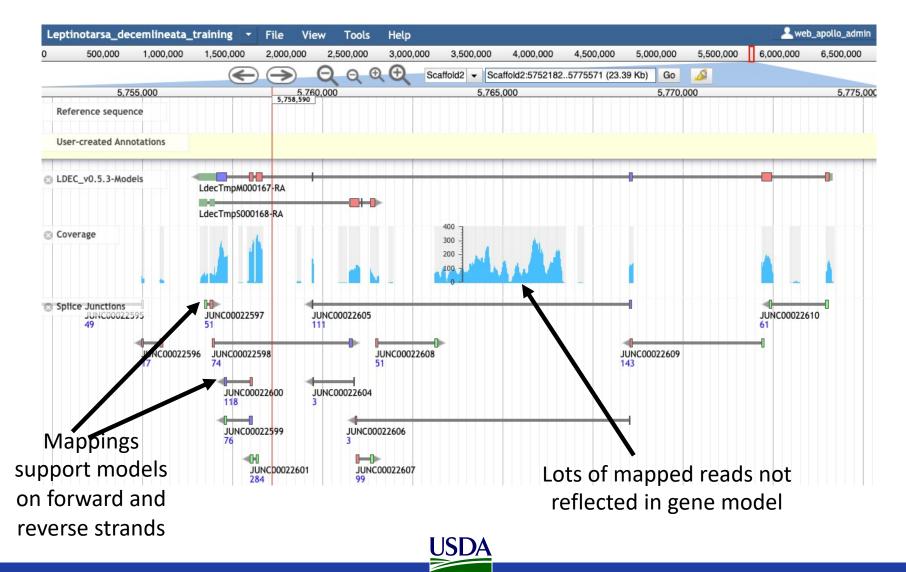
 Junction reads: Useful combined with coverage plots; show where mapped reads are spliced. The blue numbers show the 'score' – the number of mappings that support the splice junction.


▼ RNA-Seq	25	⇔pollo	File V	'iew Help							Login
▼ Coverage Plots	в	0	1,000,000	2,000,0	000 3,0	000,000	4,000,000	5,000,000	6,000,000	7,000,000	8,000,000
Egg, coverage				$\bigcirc \bigcirc$	QQC	Ð 🕀	NW_022639451.1 -	NW_022639451.1:	72565237258428 (1.	91 Kb) Go 🏼 🍐	3
Larva, coverage Male, coverage Non-reproductive Adult Worker, coverage		0		7,25	7,000		7,257,500		7,258	,000	
✓ Odobru_Obru_Y1_RNA-Seq-alignments_2020- 06-02_coverage		NCBI_Annot	tation_Rele	ase_100_Gene	XM 03283	4294.1 erized LOC	16853271	-			
Queen, coverage Reproductive Adult Worker, coverage		💿 Odobru_Ob	ru_v1_RNA	-Seq-alignment	s_2020-06-02-j	unctions		JUNC00003628			
▼ Mapped Reads 8 Egg	8	4			JUNC000	03573			JUNC00003	630	
Larva Male Odobru_Obru_v1_RNA-Seq-alignments_2020- 06-02 Pupa					JUNC000	03574	JUNC00003627	_	JUNC00003 16	629	
Queen Reproductive Adult Worker Splice junctions 8	8	💿 Odobru Ob	ru v1 RNA	-Seq-alignment	s_2020-06-02_c	overage	218				
Egg, junction reads Larva, junction reads Male, junction reads	eads			, ,		5	200 -				
 Non-reproductive Adult Worker, junction reads ✓ Odobru_Obru_1_RNA-Seq-alignments_2020- 06-02_junctions ○ Pupa. junction reads 									_		
	1 11				USE)A					

A simple case

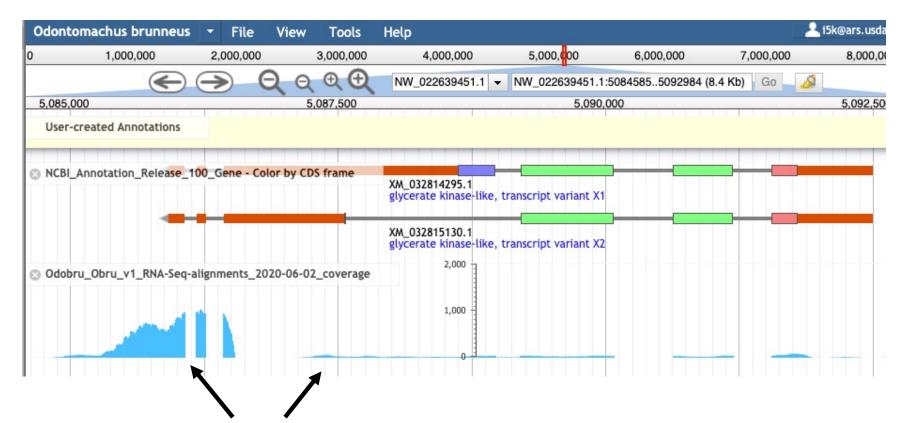
Leptinotarsa_decemlineata_training 🝷 File View Tools Help	🚨 web_apollo_admin
0 500,000 1,000,000 1,500,000 2,000,000 2,500,000 3,000,000	3,500,000 4,000,000 4,500,000 5,000,000 5,50 <mark>0</mark> ,000 6,000,000 6,500,000
	affold2 👻 Scaffold2:54762975494057 (17.76 Kb) Go 💋
5,480,000 5,481,453 5,481,453	85,000 5,490,000
Reference sequence	
User-created Annotations LdecTmpM000164-RA-00001	
© LDEC_v0.5.3-Models	
Pooled data from 60 adult 1st generation female beetles from Wisconsin coverage	80
RNA-Seq	
coverage	
© Pooled data from 60 adult 1st generation JUNC00022583	
female beetles from Wisconsin - Splice Junctions 33	Splice junctions
Pooled data from 60 adult 1st generation female beetles from Wisconsin	junctions
Mapped	jenneeneen
reads	
Teaus	

A simple case



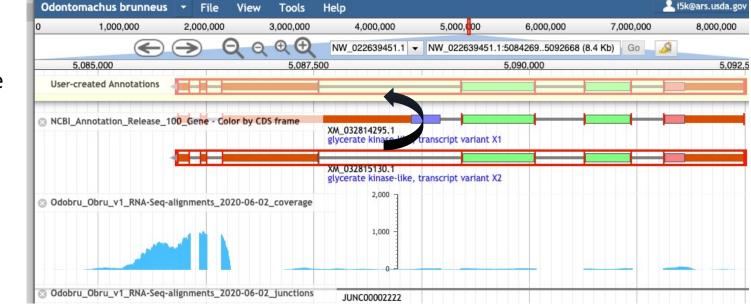
A more complex case

Leptinotarsa_dec	emlineata_	training 🝷	File V	iew Tools	Help						2 we	o_apollo_admin
0 500,000	1,000,000	1,500,000	2,000,000	2,500,000	3,000,00	3,500,000	4,000,000	4,500,000	5,000,000	5,500,000	6,000,000	500,000
		\leftarrow	\rightarrow	QQG	e 🕀	Scaffold2 - Sc	affold2:6351267	76369123 (17.	86 Kb) Go	2		
		6,355,000	-			6,360,000			6,365	5,000		
Reference sequen	ce											
User-created Anno	otations											
DEC_v0.5.3-Mode	els			LdecTmpM0001	85-RA	-						
Coverage						2,000						
				1		1,000		- -				1
· · · ·					-	E			-			
⊗ Splice Junctions	JUNC0002	22686				JUNC000	022692			JUNC000 667	22694	
	JUNC0002	22687				-		JUNC0 729				
				0	-			-		A miss	ing	
				JUNC00022689 52							_	
				JUNC00022688	/	-				exon	1 !	
				712								
				second		JUNC000226 641 JUNC000226		P				
			130			11						

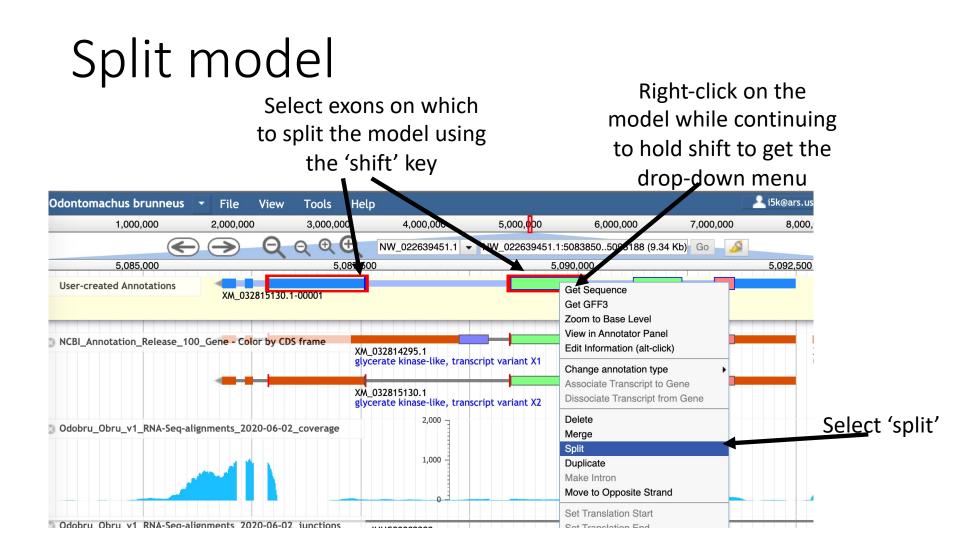

A really messy case

Basic structural changes – splitting and merging a model, adding and removing exons

RNA-Seq evaluation

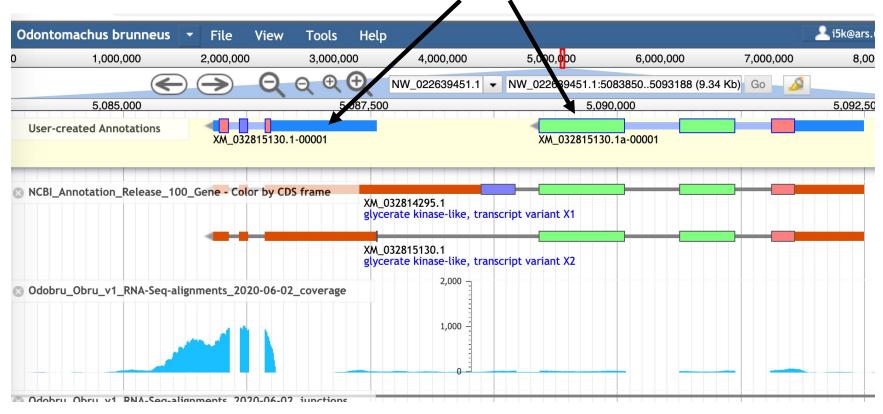


- Very different coverage between UTR and CDS
- No RNA-Seq coverage between high and low expression areas
 - 2 separate models?

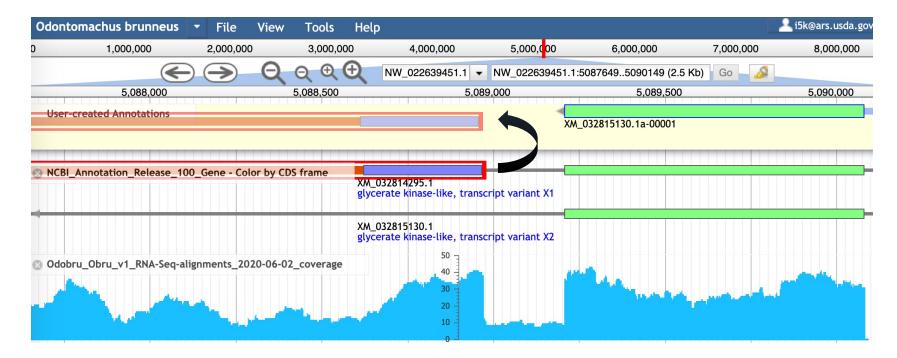


Create new model in user-created annotations track

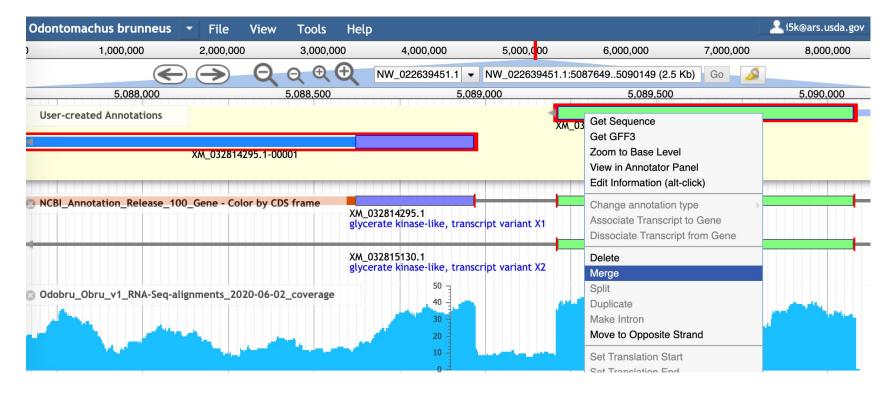
Drag evidence to UcA track (or right-click and select "create annotation")



Split model


You now have 2 models! Let's start fixing the model on the right – it needs a 3' exon.

Add an exon


Zoom in, select the missing exon, drag up to UcA track

Merge exons

Shift-select both exons, shift-right click, then select 'merge' from the dropdown menu

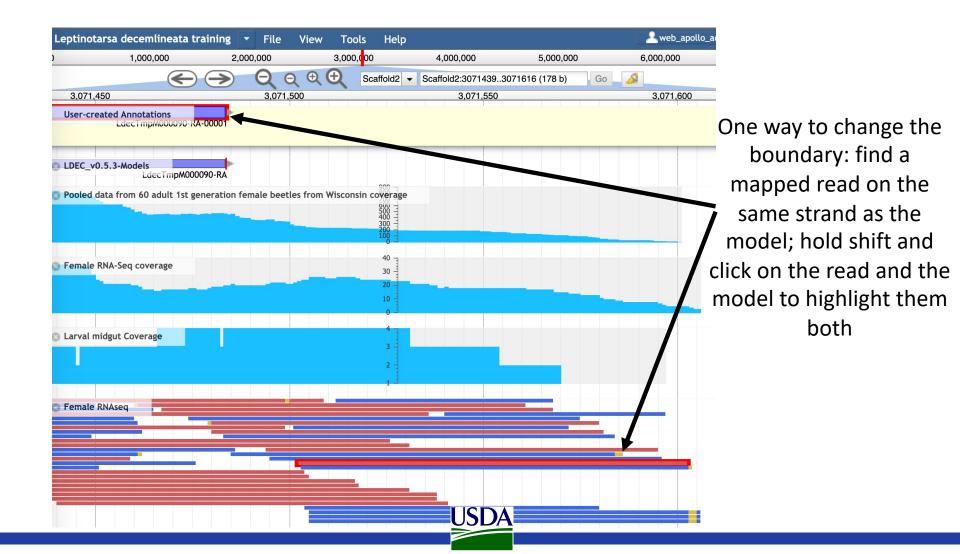
UTRs – how and when to add or adjust

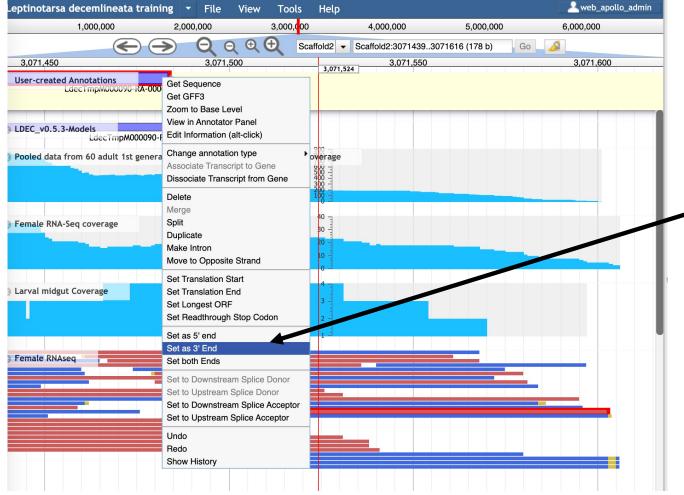
Adding or adjusting UTR boundaries

- When should you add or change UTRs?
 - Only if you have RNA-Seq evidence with sufficient coverage relative to the rest of the model
 - Adding or changing UTRs is helpful, but not necessary if you're only interested in the protein sequence
 - Deciding where the UTR ends is usually a judgement call
- Apollo tools for gene boundary changes:
 - Manual edge-matching to available evidence
 - Automated edge-matching to available evidence

RNA-Seq evidence ends in different places for

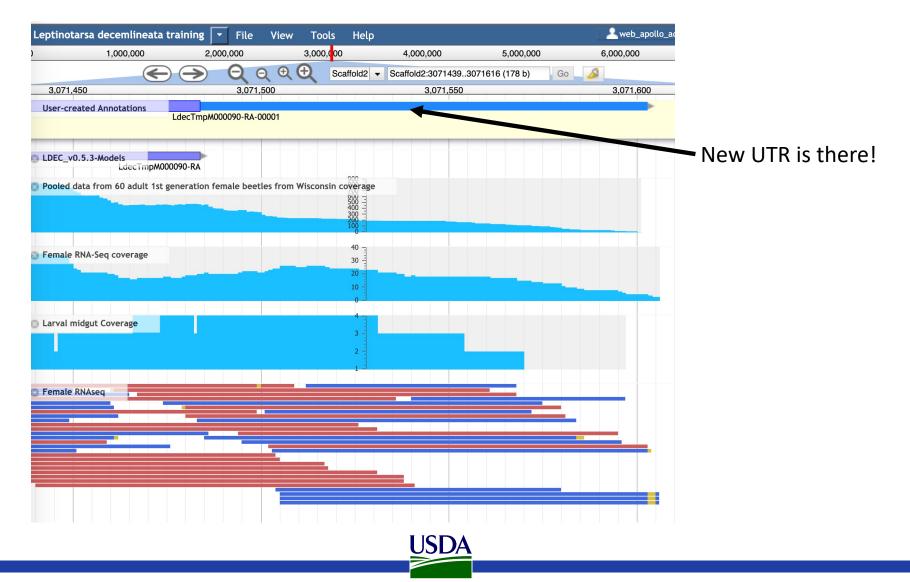
each track – how do you decide?

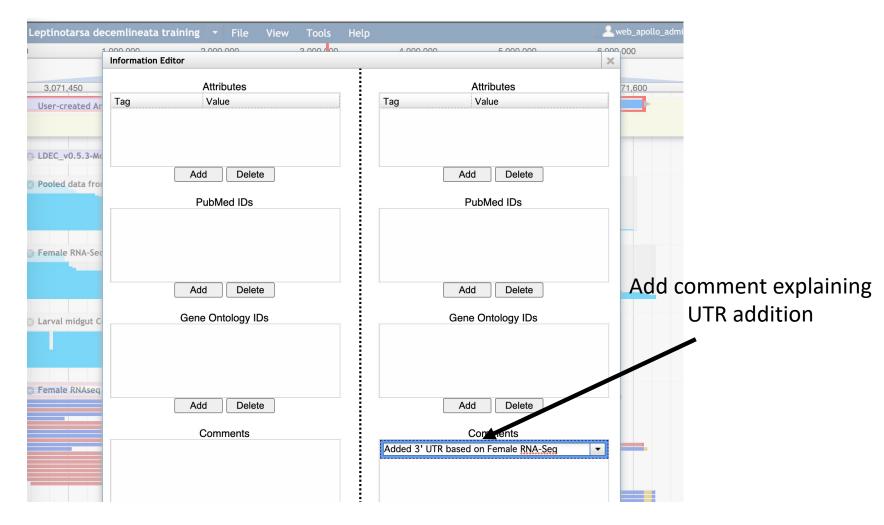

Leptinotarsa decemline	eata training 🝷 Fil	e View Too	ols Help			🚨 web_apollo_admin
0 1,000,000	2,000,000	3,000),(<mark>0</mark> 0	4,000,000	5,000,000	6,000,000
		ର୍ 🕀 🕀	Scaffold2 -	Scaffold2:30712903	071645 (357.b) Go	
	3,071,375			3,071,500		3,071,625
User-created Annotation	s					
LDEC_v0.5.3-Models						
	LdecTmpM000090-RA		2.000			
S Pooled data from 60 adu	It 1st generation female b	eetles from Wiscon	2,000 sin coverage			
			1,000 -			
			ك 0			
S Female RNA-Seq coverag	e		600 500 -			
			400 – 300 –			
			200 - 100 -			
			0 -			
🙁 Larval midgut Covera <mark>ge</mark>			4			1
			3			
			2 -			
			1			



Pick the longest boundary available, and note which track you used in the 'Comments' section

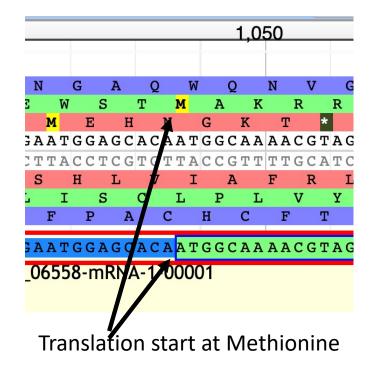
Leptinotarsa decemline	eata training 🝷 File	View Tools	Help		🚨 web_apollo_admin
0 1,000,000	2,000,000	3,000,0 <mark>0</mark>	4,000,000	5,000,000	6,000,000
($ \bigcirc \bigcirc \bigcirc \bigcirc $	Q @ 🕀 s	Scaffold2 - Scaffold2:307	12903071645 (337 b) G	0 _ 🖉 _
	3,071,375		3,071,500		3,071,625
User-created Annotations					
LDEC_v0.5.3-Models					
	LdecTmpM000090-RA		2,000 ¬		
🙁 Pooled data from 60 adul	t 1st generation female be	etles from Wisconsin	coverage		
			1,000 -		
			0 -		
Female RNA-Seq coverage	9		600 - 500 - 400 - 200 - 100 - 0 -		
			4		
💿 Larval midgut Coverage			2-1		1

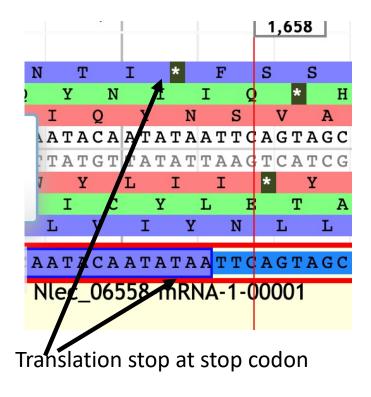


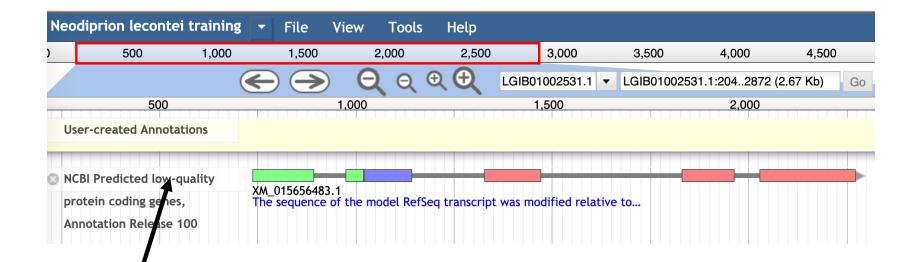


Right-click on model in user-created annotations track, and select 'Set as 3' end' from the drop-down menu

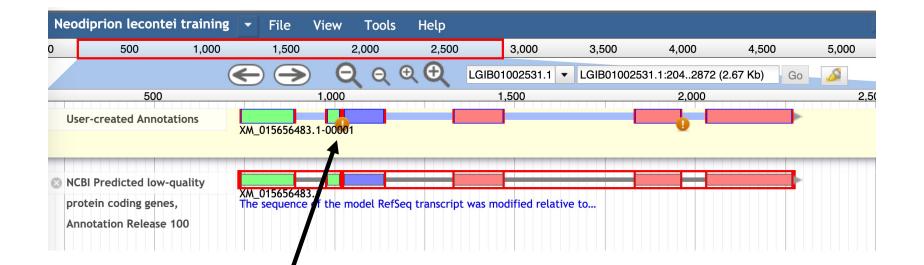
Starts, stops, open reading frames

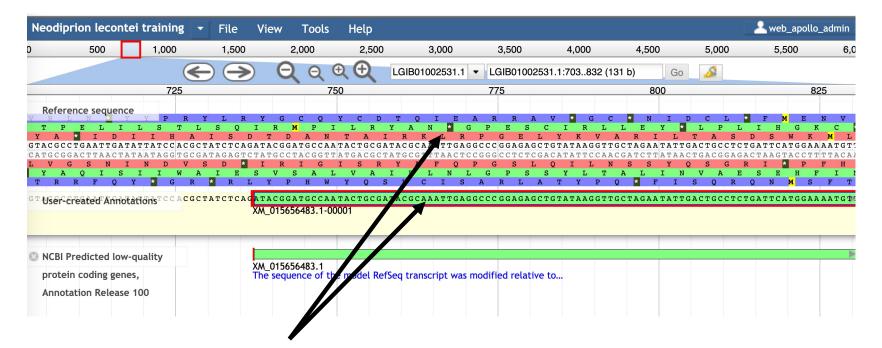

Setting the sequence start, stop, and open reading frame (ORF)

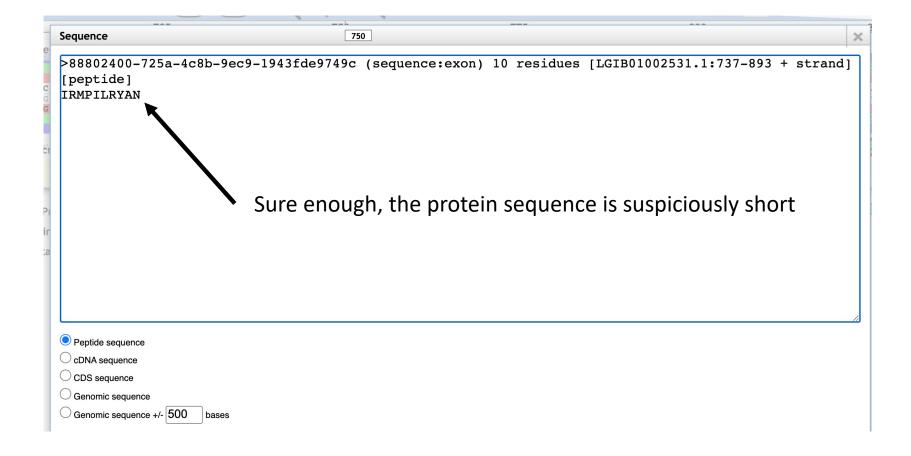

- Apollo will automatically calculate the longest possible ORF that includes canonical 'Start' and 'Stop' signals (<u>https://genomearchitect.readthedocs.io/en/latest</u> /UsersGuide.html#start-and-stop-sites)
- However, in some fringe cases, you will need to double-check
- You can change a model's start and stop sites if needed

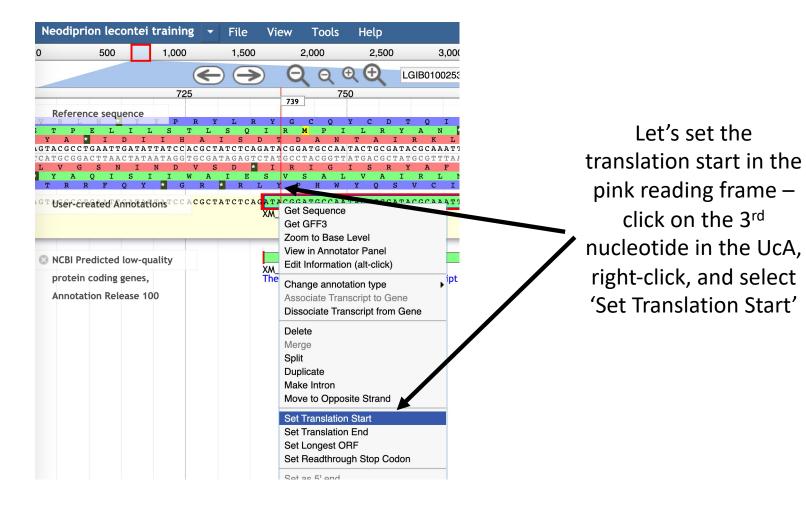


Open reading frame (ORF): translated region

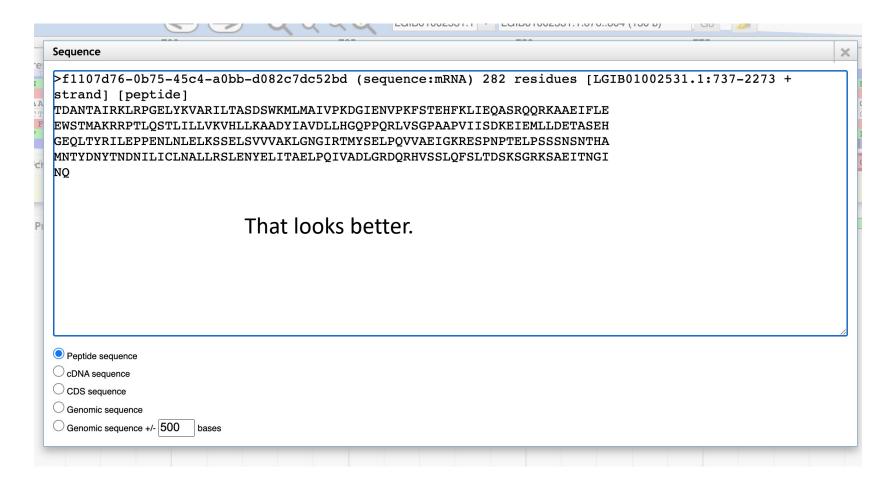


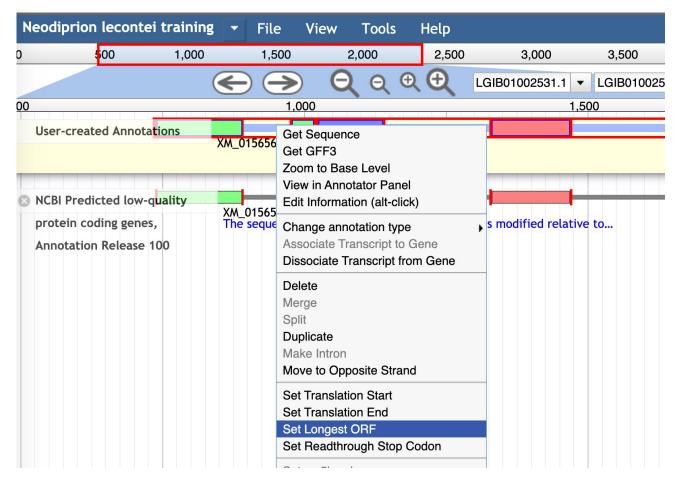

This is a 'low quality' protein coding gene from NCBI – it will likely show some problems in Apollo


We can see a non-canonical splice site in the UcA (more on that later). Let's zoom to the start of the model.

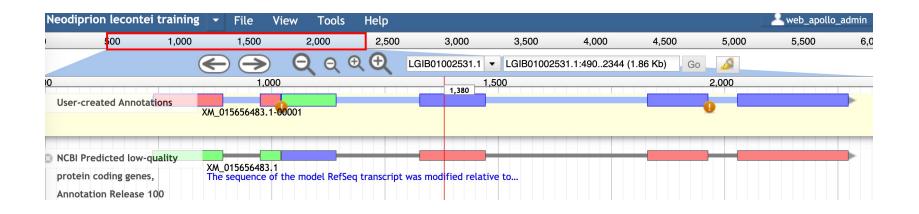


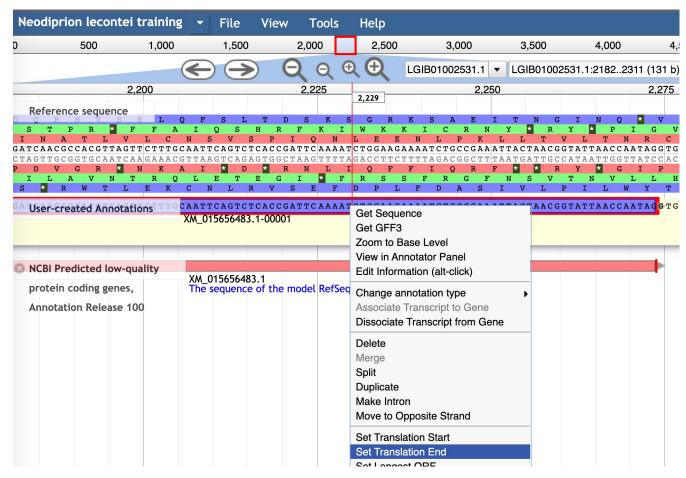
Apollo shows this model in the green reading frame – however, we can see a stop pretty early on in the genome sequence - but that's not reflected in the Apollo model! It looks like the pink reading frame doesn't have stops.

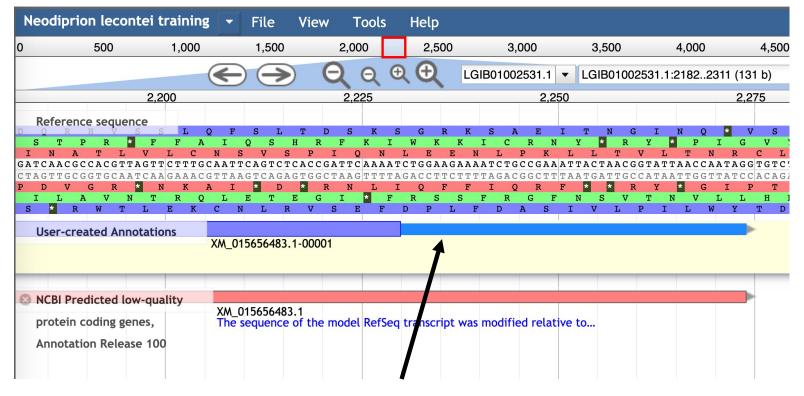




Ne	odiprion	lecont	ei trai	ning 👻	File	View	Tools	Help													A web	_apollo	o_admin
0	5	00	1,(000	1,500		2,000	2,500)	3,000		3,500)	4,000)	4,5	00		5,000)	5,5	500	6,0
				725			7	750	_	_		775					800					825	
F	Reference s	equenc	e	PR	'T. R	Y G	C O	Y C D	Ψ () T F	A 5	RR	τα	7 *	G C	* 1	л т	D	C I	. *	FM	(E	N V
I V	PE	LI	LS	TL	SQ	IR	M P	I L R	YA	N *	G	P E	S C	IR	L	LE	Y	*	LP	L	I H	GI	K C
GTA	CGCCTGA	ATTGAT	TATTAT	CCACGCI	ATCTCAC	GATACGO	GATGCCA	ATACTGCG	ATACGO	CAAATTG	GAGGC	CCGGA	GAGCTO	GTATAA	GGTTG	CTAG	AATAI	TGA	CTGC	CTCTG	ATTCA	TGGA	AAATGT
CAT	GCGGACTI	TAACT	ATAATA	GGTGCGA	TAGAGTO	CTATGCC	TACGGT	TATGACGC	TATGCC	TTTAAC	TCCG	GGCCT	CTCGAC	CATATT	CCAAC	GATC	TATA	ACT	GACGO	GAGAC	TAAGI	ACCT	TTACA
Y	AQ	IS		W A	IE	S V	S A		IR			G P	S S	Y L	T	AL	I	N	VA	E	S E	H	
l	Jser-create	d Anno	tations	GK			E(492 4 (1 2	5 V		JA				r ç				Ŷ	K Q	N	M J	r 1
						XM_0156	56483.1-0	0001															
-									-		-		-		-	-		-				_	
0	NCBI Predic	ted low	-quality				F(402 4																Þ
F	orotein codi	ing gen	es,			The sequ	uence of t	he model Re	efSeq tra	nscript w	as moo	lified re	lative to	D									
ļ	Annotation	Release	e 100																				
				- ,																			
				١	<i>Ne're</i>	e in i	tne p	ыпк															
				rea	ading	g fra	me r	now –	-														
				iet	s che	CK L	ne p	orotei	[]														
					S	eque	ence																

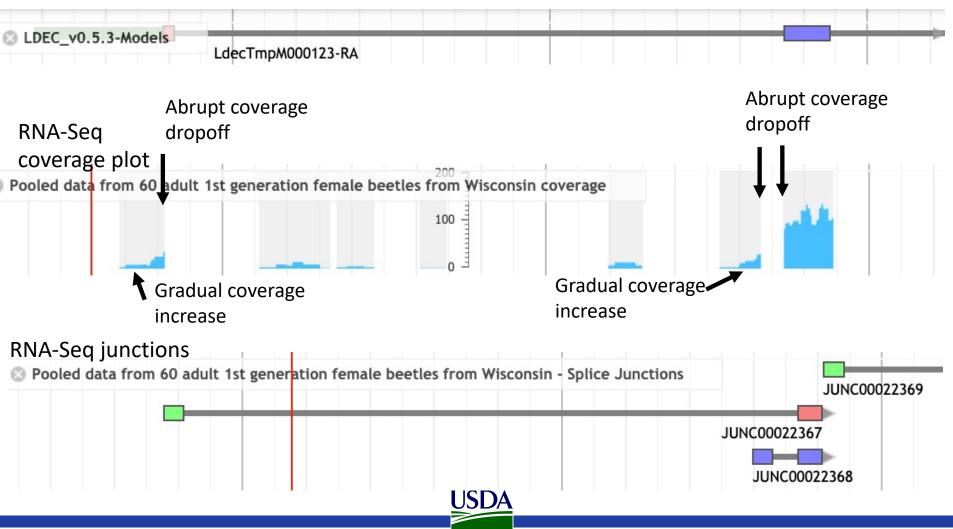


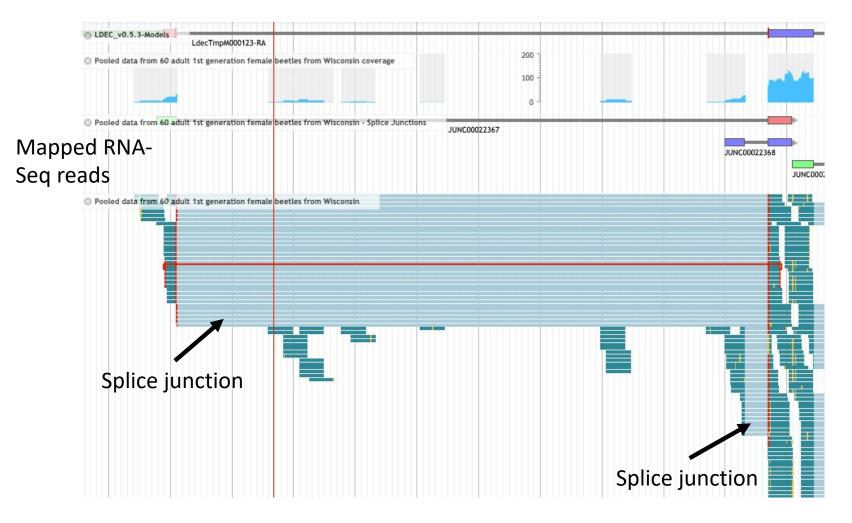

Sometimes it can be hard to tell what the protein sequence should be – in that case you can rightclick and select 'Set Longest ORF'


Sequence >9190e15d-dcee-45c8-9236-5d7babfca448 (sequence:mRNA) 282 residues [LGIB0100253 strand] [peptide] TDANTAIRKLRPGELYKVARILTASDSWKMLMAIVPKDGIENVPKFSTEHFKLIEQASRQQRKAAEIFLE EWSTMAKRRPTLQSTLILLVKVHLLKAADYIAVDLLHGQPPQRLVSGPAAPVIISDKEIEMLLDETASEH GEQLTYRILEPPENLNLELKSSELSVVVAKLGNGIRTMYSELPQVVAEIGKRESPNPTELPSSSNSNTHA MNTYDNYTNDNILICLNALLRSLENYELITAELPQIVADLGRDQRHVSSLQFSLTDSKSGRKSAEITNGI NQ This also fixed the reading frame.

Similarly, if you have evidence to change the translation end, you can click on the corresponding nucleotide, rightclick, and select 'Set Translation End'

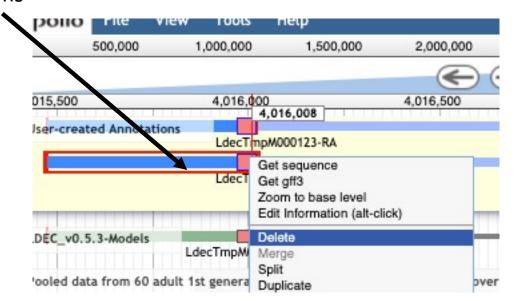
Now the sequence after the translation end is 3' UTR.


Annotating isoforms



- In our experience, lots of mapped RNA-Seq reads are critical for good manual isoform annotation
- Before evaluating RNA-Seq for isoforms, it helps to understand how to interpret gradual and abrupt drops in coverage
 - Gradual usually means 5' start or 3' end of expression
 - Abrupt usually means splice junction
- Checking junction reads (if available) is incredibly useful

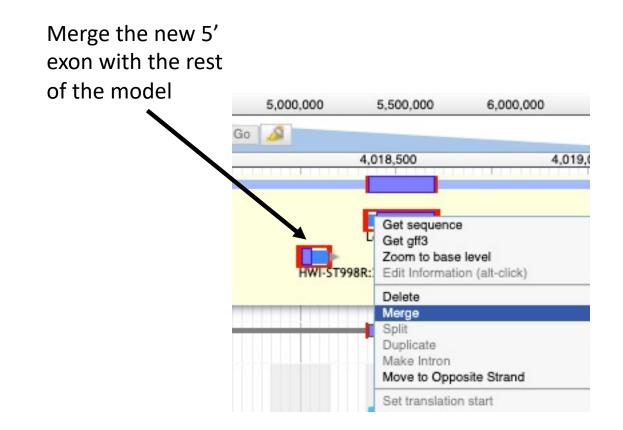
5' end of MAKER tyrosine protein kinase gene prediction



Create 2 isoforms from Maker model

Spollo	File Vi 500,000	1,000,000	ielp 1,500,000	2,000,000	2,500,000	3,000,000	3,500,000	4,0000000	4,500,000	5,000,000	5,500,000	6
					→ Q	Q @ 🕀	Scaffold2 - Scaffo		265 (3.9 Kb) (ão ⊿		
4,015,500		4,016,000		4,016,500		4,017,000	4,017,5	00	4,018,000		4,018,500	
User-crea	ted Annotatio	ns LdecTmpMC										
LD <mark>EC_v0</mark> .	5.3-Models	LdecTmpM00012	3-RA									
Pooled da	ta from 60 ad	ult 1st generation 1	emale beetles fr	om Wisconsin cover	age		100				-	
Pooled da	ta from 60 ad	ult 1st generation 1	emale beetles fr	om Wisconsin - Spli	ce Junctions	JUNC00022367	0 =		_			
										JUNCOO	022368 JUNC00	22369
Pooled da	ta from 60 ad	ult 1st generation 1	emale beetles fr	om Wisconsin							197	

Select and delete 5' exon from one of the isoforms



Isoform annotation Add a mew State mom mapped

RNA-Seq evidence

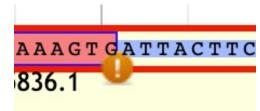
(Apo	llo File	View	Tools	Help								
0	500,000		1,000,000	1,500,000	2,000,000	2,500,00		3,500,000		4,500,0	5,000,000	5,500,000
						\rightarrow	2 Q Q Q	Scaffold2 - S	caffold2:4015366401	9265 (3.9 Kb)	Go 🔊	
4,015	500		4,016,000	1	4,016,500		4,017,000	4,0	17,500	4,018,000	4.01	4.018,500 8,287
User	created Anno	tations	L docTmp	M000123-RA							4,01	6,267
			Luechnip	1000123-104								
											A	LdecTmpM000123
	_v0.5.3-Mode											
O LDEG	_vu.5.3-mode	Lo	decTmpM000	123-RA							Ŧ	
O Pool	ed data from 6	0 adult 1:	st generation	n female beetles f	rom Wisconsin cov	erage		200				
								100				and the
								0				
								°	02000000000000			
O Pool	ed data from 6	0 adult 1	st generation	n female beetles f	rom Wisconsin - Sp	tice Junctions	JUNC00022367					
												22368
												JUNC000223
												5011200222
Pool	ed data from 6	0 adult 1	st generation	n female beetles f	rom Wisconsin						····	10 A
											E	

2 isoforms supported by RNA-

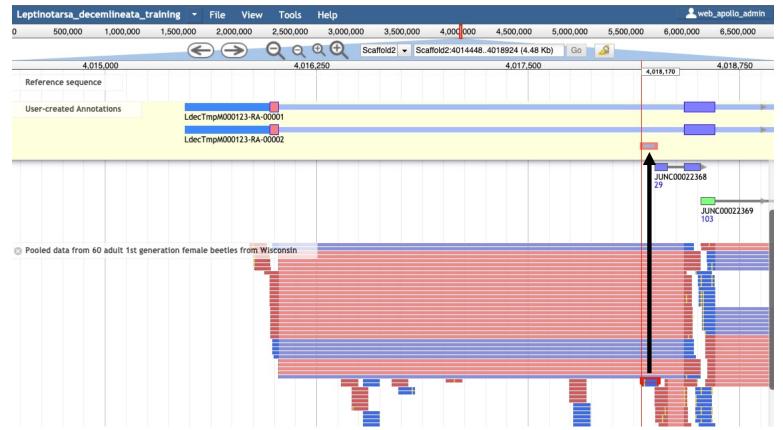
Seq evidence

pollo		View Tools	Help									
	500,000	1,000,000	1,500,000	2,000,000	2,500,000	3,000,000	3,500	2	4,000 00	4,503,000	5,000,000	5,500,00
					$\rightarrow Q$	$Q \oplus \Theta$	Scaffold2	 Scaffold 	2:4015:6640192	265 (3.9 Kb) G	io 📣	
,015,500		4,016,000		4,016,500		4,017,000		4,017,500		4,018,000		4,018,500
User-creat	ted Annot	4,015,716										
		LdecTmp	M000123-RA									
											1040 57	0000.000.000
											HWI-ST	998R:233:H79E
DEC VO.	5.3-Model											
		LdecTmpM000	123-RA									
ooled da	ta from 60	adult 1st generatio	n female beetles fr	om Wisconsin cover	age		200					
		about the generatio										
							100					and an
				and the second			0					
							0					
ooled da	ta from 6	adult 1st generatio	n female beetles fr	om Wisconsin - Splie	ce Junctions							
						JUNC00022367						100000
											LUNCO	0022368
											5011000	.022300
												JUN
oled da	ta from 60	adult 1st generatio	n female beetles fr	om Wisconsin								

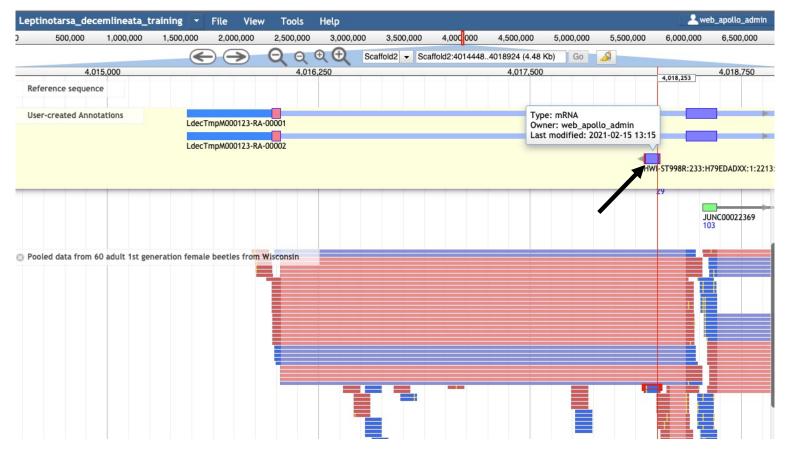
Non-canonical splice sites



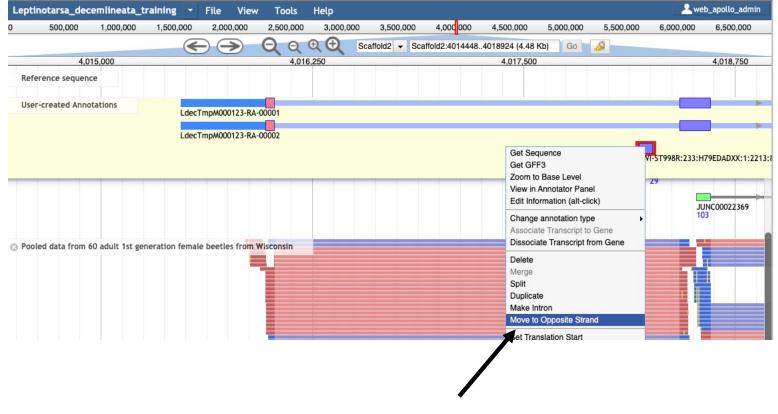
Splice sites

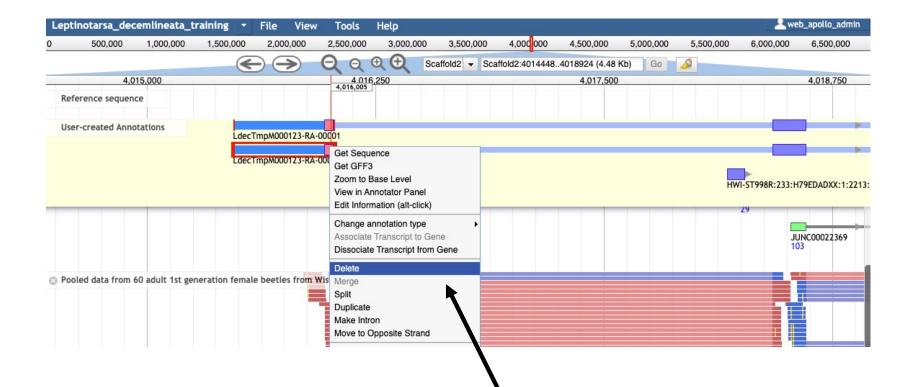

Introns are removed from primary transcripts by cleavage at conserved sequences called **splice sites**. These sites are found at the 5' and 3' ends of introns.

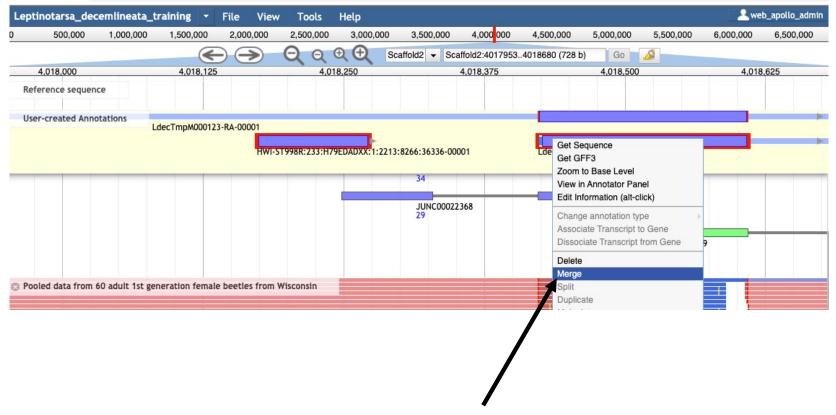
(https://www.nature.com/scitable/topicpage/rna-splicing-introns-exons-and-spliceosome-12375/)

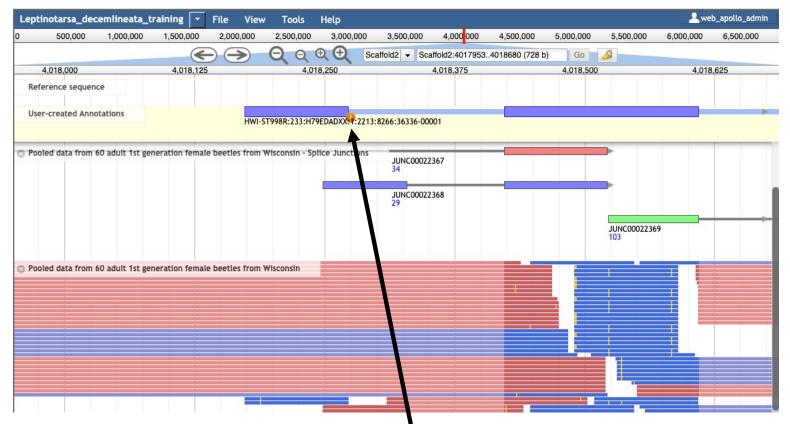


'Non-canonical' splice sites – non-conserved, and possibly erroneous sites – are marked by an exclamation point in Apollo.


Let's revisit the previous 'Isoform annotation' example. Let's add the new exon using different starting evidence.


That starting evidence was mapped to the reverse strand – let's flip it to the forward strand


Right-click on the evidence and select 'Move to Opposite Strand'


Delete the 5' exon as previously (no support for it for this isoform)

Merge the new 5' exon with the model

Now that the models are merged, Apollo shows us a non-canonical splice site

Le	ptinotarsa	_decemlinea	ta_traini	ng 🔻	File	View	Tools	s Hel	p																1	web_	apol	lo_adı	min
0	500,0	000 1,000,0	00 1,5	00,000	2,000	,000	2,500,0	00 3	,000,0	00	3,50	00,000	4	4,000	000	4,50	0,000	5	,000,	,000	5,5	500,0	00	6,0	00,00	0	6,50	00,00)
				<	$\ni \ominus$		Qe		Ð	Scat	ffold2	▼ Sc	affold	d2:401	8202	401834	4 (14	4 b)	(Go	2								
00	-	4,01	8,225			4,01	8,250				4,01	18,275					4,01	8,300			_	_		4,018,	325		_		
R	Reference se		NQY	S Q	M S	c v	wc	кт	N	IN	s s	т	L	н	I	S L	S	ну	E	G	w	N S	S R	N	K	G S	3 3	K	L
H T H ACAG	H T Q P H A CCACACGCA	T H K E	P V T S AACCAGT	L T T H ACTCAC	N V K C AAATGT	L R L A CTTGCG	L V S G TCTGGT	Q N A K GCAAAA	E R T CGAA	H Q S CATC	I I	H S A L GCACT	L F CTTT	T N TAACA	Y F I F ATATT	F L Y	I L	T	G	R K G	V E GTGG	L T AACI	A R TCGC	K E T GAAA	Q G R CAAG	V GGTZ	V		T I S S
TGTO	GGTGTGCG1 W V C	TTGAGTGTTCC	TTGGTCA S G T	TGAGTG	TTTACA F T	GAACGC K R	AGACCA R T	CGTTTT C F	GCTT	GTAGI C	TAT(CGTGA	GAAA E B	ATTG:	Y	AGAAA	I	E S	CCC	TTCC	CACC	TTG/	AGCG S A	CTTT	GTTC			TGT	TGA
C 1	G C A V V R	LSVL	FW	YE	СІ	R A D Q	TQ	HL	R V F	V D M	LI	A S L V	R	L (M N C I	EI	C D		Q	SI	P P H	F	E	RF	L	P	L	• I	r s
	ser-created	I Annotations G of		998R:233							1																		
0 L	.DEC_v0.5.3	-Models	lecTmpM00	0123-RA																									
© P	ooled data	from 60 adult 1:	t generati	on femal	e beetles	from W	isconsin	coverage	,		30 20 10																		

- Canonical donor splice sites should be G(T/U) this is GC
- The coverage track shows us that the exon needs to extend further to the right

Lept	inotarsa_dece	mlineata_tr	aining 🔻	File Viev	v Tools	Help						🔔 web	o_apollo_admin
0	500,000	1,000,000	1,500,000	2,000,000	2,500,000	3,000,00	3,500,000	4,000 000	4,500,000	5,000,000	5,500,000	6,000,000	6,500,000
				$ \in $	QQ	⊕ ⊕	Scaffold2 - S	caffold2:4017988	84018555 (568 b) Go	2		
,018,00	0		4,018,1	25		4,018	,250		4,018,375			4,018,500	
Ref	erence sequence	2											
Use	r-created Annot	ations								_			
					HWI-ST998R:2	33:H79EDADX	(:1:2213:8266:36	336-00001					
⊗ LDE	C_v0.5.3-Model	LdecTr	npM000123-R	4									
O Poo	led data from 60	adult 1st gen	eration fema	le beetles from	Wisconsin								
							-	_			1		
I													

Let's use another RNA-Seq read to extend the exon to the actual splice site

Leptinotarsa_decemlineata_training - File View Tools	Help						A wel	b_apollo_admi
500,000 1,000,000 1,500,000 2,000,000 2,500,00	0 3,000,000	3,500,000	4,000 <mark>000</mark>	4,500,000	5,000,000	5,500,000	6,000,000	6,500,000
	🕀 🕀 Scaff	iold2 - Scaf	fold2:4017988	4018555 (568 b) Go	<u> </u>		
8,000 4,018,125	4 018 250	4,018,260		4,018,375			4,018,500	
Reference sequence								
User-created Annotations HWI-ST998R:	:233:H/9EDADXX:1:4	Get Sequence Get GFF3			(
		Zoom to Base	Level					
LDEC_v0.5.3-Models		View in Annota Edit Informatio	tor Panel					
Pooled data from 60 adult 1st generation female beetles from Wisconsin		Change annota Associate Tran Dissociate Tra		• ne				
		Delete Merge Split Duplicate Make Intron Move to Oppos	ite Strand			Γ		
		Set Translatior Set Translatior Set Longest O Set Readthrou	End					
		Set as 5' end Set as 3' End Se both Ends						
			eam Splice Dor n Splice Donor	ior				

- Shift-click on the model's 5' exon and the RNA-Seq read
 - right-click to open menu
 - Select 'Set as 3' end'

USDA

Control Control Scattold2 Sc	Lept	inotarsa_dece	emlineata_1	training	File	View	Tools	Help						🔔 we	b_apollo_admin
D18.000 4.018.125 4.018.250 4.018.375 4.018.500 Reference sequence User-created Annotations HWI-ST9988:233:H79EDADXX:1:2213:8266:36336-00001 CDEC_v0.5.3-Models LdecTmpM000123-RA Pooled data from 60 adult 1st generation female beetler from Wisconsin	0	500,000	1,000,000	1,500,000	2,00	0,000			00 3,500,0	00 4,000 000	4,500,000	5,000,000	5,500,000	6,000,000	6,500,000
Reference sequence User-created Annotations HWI-ST998R:233:H79EDADXX:1:2213:8266:36336-00001 CDEC_v0.5.3-Models CdecTmpM000123-8A Pooled data from 60 adult 1st generation female beetles from Wisconsin				($\mathbf{\Theta}$	≥	QQ	⊕	Scaffold2 -	Scaffold2:4017988	34018555 (568 b) Go	2		
Reference sequence User-created Annotations HWI-ST998R-233:H79EDADXX:1:2213:8266:36336-0001 DECC_v0.5.3-Models LdecTmpM000123-RA Pooled data from 60 adult 1st generation female beetlef from Wisconsin	,018,00	0		4,018	,125	4.018.1	55	4,01	8,250		4,018,375			4,018,500)
 DEC_v0.5.3-Models LdeCTmpM000123-RA Pooled data from 60 adult 1st generation female beetles from Wisconsin 	Ret	ference sequenc	e			.,,.									
Cuechange in the second sec	Use	er-created Annot	ations			ŀ	IWI-ST998R:2	33:H79EDAD>	X:1:2213:8266:	36336-00001					*
	🔉 LDI	EC_v0.5.3-Model	s LdecT	mpM000123-I	RA										
	O Poo	oled data from 6	0 adult 1st ge	eneration fem	nale beetl	es from \	Wisconsin								
						2.00									
									7						
									Fixed						

Thank you!

The NAL Team

- Chris Childers
- Vern Chapman
- Ming Chan
- Sean Buehler
- Amanda Cooksey

- i5k Coordinating Committee
- i5k Pilot Project
- Apollo & JBrowse Development Teams
- GMOD/Tripal community
- All of our users and contributors!

Contact us:

- <u>https://i5k.nal.usda.gov/contact</u>
- i5k@ars.usda.gov
- Monica.Poelchau@usda.gov
- Christopher.Childers2@usda.gov

