Pachypsylla venusta

Overview

Pachypsylla venusta is a gall-forming psyllid (Insecta: Hemiptera) specializing on hackberry trees, which are widely distributed in the United States.

Like many closely-related hemipterans such as whiteflies, aphids, and mealybugs, psyllids have a nutritionally imbalanced diet consisting primarily of plant sap. To compensate for the paucity of essential amino acids and other required nutrients in their diets, these insects have evolved ancient and intimate symbiotic relationships with intracellular bacteria that are capable of synthesizing these compounds.

The genome of the bacterial symbiont Carsonella from Pachypsylla venusta has been sequenced and represents one of the most extreme cases of genome reduction ever identified. At only 160 kb in size, this bacterial genome lacks many genes thought to be essential for cellular life, making this system an important model for elucidating the genomic mechanisms of host-symbiont interactions.

A complete genome from this gall-forming psyllid will also provide a valuable resource for investigating plant-insect interactions and gall-induction.

Data were generated by the Baylor College of Medicine's i5k pilot project.

View the Baylor College of Medicine's data sharing policy.

Community contact:

Image Credit: Copyright Dan Sloan
Organism Image
Feature Summary
The following features are currently present for this organism
Feature TypeCount
CDS54,832
mRNA14,390
Gene14,390
Contig N50
1410
Scaffold N50
125467
Number Of Genes
14390
Community Contact
Community Contact: 
Daniel Sloan|daniel.sloan@yale.edu
Image Credit
Copyright Dan Sloan

Assembly Information

Analysis Name Whole genome assembly of Pachypyslla venusta
Software Baylor College of Medicine genome assembly pipeline (NA)
Source Pachypyslla venusta Gpsy02072013 assembly
Date performed 2013-07-16
Materials & Methods

Sequence generation for assembly. For this project we are generating fairly high coverage in a number of different insert sized libraries. The assembly strategy is based around a seed allpaths assembly (the Broad Allpaths assembler) followed by seed assembly improvement using homegrown tools, Atlas-link and Atlas-GapFill, which can significantly improve the results. Thus we generate sequence data to enable the Allpaths assembly. As of Nov 2011 this is: - 40X genome coverage in 180bp insert library (100bp reads forward and reverse); and 40X 3kb insert data. To enable better scaffolding and local gap filling we additionally generate 500bp, 1kb, 2kb, and 8kb insert sizes at > 20X coverage.


Source: Baylor College of Medicine i5K Project Summary

Statistics

Assembly Metrics
Contig N50 1410
Scaffold N50 125467
GC Content 35.82
Manual Annotations