An official website of the United States government.

The .gov means it’s official.
Federal government websites always use a .gov or .mil domain. Before sharing sensitive information online, make sure you’re on a .gov or .mil site by inspecting your browser’s address (or “location”) bar.

This site is also protected by an SSL (Secure Sockets Layer) certificate that’s been signed by the U.S. government. The https:// means all transmitted data is encrypted — in other words, any information or browsing history that you provide is transmitted securely.

H-gene-mediated resistance to Hessian fly exhibits features of penetration resistance to fungi.

Summary
Publication Type
Journal Article
Abstract

Features shared by host-specific phytophagous insects and biotrophic plant pathogens include gene-for-gene interactions and the ability to induce susceptibility in plants. The Hessian fly shows both. To protect against Hessian fly, grasses have H genes. Avirulent larvae die on H-gene-containing resistant plants but the cause of death is not known. Imaging techniques were used to examine epidermal cells at larval attack sites, comparing four resistant wheat genotypes (H6, H9, H13, and H26) to a susceptible genotype. Present in both resistant and susceptible plants attacked by larvae were small holes in the tangential cell wall, with the size of the holes (0.1 microm in diameter) matching that of the larval mandible. Absent from attacked resistant plants were signs of induced susceptibility, including nutritive tissue and ruptured cell walls. Present in attacked resistant plants were signs of induced resistance, including cell death and fortification of the cell wall. Both presumably limit larval access to food, because the larva feeds on the leaf surface by sucking up liquids released from ruptured cells. Resistance was associated with several subcellular responses, including elaboration of the endoplasmic reticulum-Golgi complex and associated vesicles. Similar responses are observed in plant resistance to fungi, suggesting that "vesicle-associated penetration resistance" also functions against insects.

Citation
Harris MO, Freeman TP, Moore JA, Anderson KG, Payne SA, Anderson KM, Rohfritsch O. H-gene-mediated resistance to Hessian fly exhibits features of penetration resistance to fungi.. Phytopathology. 2010 Mar; 100(3):279-89.
Publication Date
2010 Mar
DOI
10.1094/PHYTO-100-3-0279
Cross Reference
PMIDLoading content